Answer:
Adjacent angles
Step-by-step explanation:
They share a common vertex and side, fulfilling the criteria that makes them adjacent angles.
Sorry, needed to make up characters lol.
I believe the fastest way to solve this problem is to take any two of the given points and to find the slope and y-intercept of the line connecting those two points.
Let's choose the 2 given points (-3,16) and (-1,12).
Going from the first point to the second, the increase in x is 2 and the increase in y is actually a decrease: -4. Thus, the slope of the line connecting these two points is m = -4/2, or m = -2.
Now use the slope-intercept formula to find the y-intercept, b.
One point on the line is (-3,16), and the slope is m = -2.
Thus, the slope-intercept formula y = mx + b becomes 16 = -2(-3) + b.
Here, b comes out to 10.
So now we have the slope and the y-intercept. Write the equation:
y = mx + b becomes y=-2x+10. Which of the four given answer choices is the correct one?
Answer:
EASY PEASY
Step-by-step explanation:
9²
HOPE IT HELPS YOU
First, let's make these two into equations.
The first plan has an initial fee of $40 and costs an additional $0.16 per mile driven.
Our equation would then be
C = 40 + 0.16m
where C is the total cost, and m is the number of miles driven.
The second plan has an initial fee of $51 and costs an additional $0.11 per mile driven.
So, the equation is
C = 51 + 0.11m
where C is the total cost, and m is the number of miles driven.
Now, your question seems to be asking for one mileage for both, equalling one cost. I would go through all the steps I've taken to try and find this for you, but it would probably take hours to type out and read. In short, I'm not entirely sure that an answer like that is possible in this situation, simply because of the large difference in the initial fee of the two plans, along with the sparse common multiples between the two mileage costs.
Answer:
84 degree
Step-by-step explanation:
the new supposed line is parallel to the given parallel lines..