Answer:
0 m/sec
Explanation:
b/c they were at rest and initial means at rest ,at rest means 0 HOPE THIS HELPS
The data given in the bar graph is valid because it follows the law of conservation of energy, since the GPE at top of 2nd hill plus KE at top of 2nd hill equals KE at bottom of 1st hill.
<h3>What is law of conservation of energy?</h3>
The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
Based on the law of conservation of energy, kinetic energy of a roller coaster can be converted into potential energy of the roller coaster and vice versa.
ΔK.E = ΔP.E
where;
- ΔK.E is change in kinetic energy
- ΔP.E is change in potential energy
The kinetic energy of the coaster is greatest at the bottom of the hill, as the coaster moves upward, the kinetic energy decreases and will be converted into potential energy. The potential energy of the coaster increases as the coaster moves up the hill and will become maximum at the highest point of the hill.
From the given data;
GPE at top of 2nd hill + KE at top of 2nd hill = KE at bottom of 1st hill
Learn more about conservation of energy here: brainly.com/question/166559
#SPJ1
A and B, one wavelength is crest too crest
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired