Duracell batteries are an example of an electrochemical cell that is powered between the reaction of Magnesium and Zinc, occurring in basic conditions (alkaline battery). This type of reaction has a precise output of 1.5 volts, and looks like this:
Zn + 2MnO2 ➡️ ZnO + Mn2O3
It’s not rechargeable.
Golf Cart Batteries are an example of an electrochemical cell that is powered by the reaction between Lead and Sulfuric Acid (Lead-Acid battery). This type of reaction occurs on larger scales than an alkaline battery, and thus can generate a variety of powers depending on how many instruments are present within the battery. The reaction looks like this:
PbO2 + Pb + 2H2SO4 ➡️ 2PbSO4 + H2O
This is a rechargeable cell, but is rather prone to discharging by the environment and surroundings of the battery.
Answer: 6.36
Explanation:
Given
Radius of grindstone, r = 4 m
Initial angular speed of grindstone, w(i) = 8 rad/s
Final angular speed of the grindstone, w(f) = 12 rad/s
Time used, t = 4 s
Angular acceleration of the grinder,
α = Δw / t
α = w(f) - w(i) / t
α = (12 - 8) / 4
α = 4/4 = 1 rad/s²
Number of complete revolution in 4s =
Δθ = w(i).t + 1/2.α.t²
Δθ = 8 * 4 + 1/2 * 1 * 4²
Δθ = 32 + 1/2 * 16
Δθ = 32 + 8
Δθ = 40 rad/s
40 rad/s = 40/2π rpm = 6.36 rpm
Therefore, the grindstone does 6.36 revolutions during the 4 s interval
Answer:
I don't know about these problems at all.
Explanation:
I don't know about physics at all
Answer:
power emitted is 1.75 W
Explanation:
given data
length l = 5 cm = 5 ×
m
diameter d = 0.074 cm = 74 ×
m
total filament emissivity = 0.300
temperature = 3068 K
to find out
power emitted
solution
we find first area that is π×d×L
area = π×d×L
area = π×74 ×
×5 ×
area = 1162.3892 ×
m²
so here power emitted is express as
power emitted = E × σ × area × (temperature)^4
put here all value
power emitted = 0.300× 5.67 × 1162.3892 ×
× (3068)^4
power emitted = 1.75 W