The second one is correct im pretty sure
Answer:

Explanation:
Hello there!
In this case, it possible to use the Rydberg equation in order to calculate the wavelength for this transition from n=3 to n=2 as shown below:

Thus, we plug in the corresponding energy levels and the Rydberg constant to obtain:

Best regards!
Answer:
The mean free path of argon molecules becomes comparable to the diameter of this container at a pressure of 0.195 Pa
Explanation:
<u>Step 1</u>: Calculate the volume of a spherical container V
V = (4π*r³)/3
r = (3V/4π)^1/3
2r = d = 2*(3V/4π)^1/3
with r= radius
with d= diameter
The diameter is:
d= 2*(3V/4π)^1/3
d= 2*(3*100cm³/4π)^1/3
d= 5.76 cm
<u>Step2 </u>: Define the free path lambda λ of argon
with λ =k*T/ σp
with p = kT/σλ
with T= temperature = 20°C = 293.15 Kelvin
with k = Boltzmann's constant = 1.381 * 10^-23 J/K
with p = the atmospheric pressure
with σ = 0.36 nm²
p = kT/σλ
p = (1.38 * 10^-23 J*K^-1 * 1Pa *m³/1J)*(293,15K) /(0.36 nm²*(10^-9/ 1nm)² *(5.76cm* 10^-2m/1cm)
p = 0.195 Pa
The mean free path of argon molecules becomes comparable to the diameter of this container at a pressure of 0.195 Pa
Answer:
P₂ = 2 atm
Explanation:
Given data:
Initial volume = 10.0 L
Initial pressure = 4.0 atm
Final volume = 20.0 L
Final pressure = ?
Solution:
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
4.0 atm × 10.0 L = P₂ × 20.0 L
P₂ = 40.0 atm. L/ 20.0 L
P₂ = 2 atm
Answer: SnO2 + 2 H2 = Sn + 2 H2O
Explanation: I used a balance equation website. It's called WebQC if you want to check it out for future help.