M=43lb = 19,5kg
If 115mg --------- is for --------- 1kg
so
x ---------- is for --------- 19,5kg
x = 19,5kg * 115mg / 1kg
x = 2242,5 mg
<h2>
Answer: Option B</h2>
Option A is incorrect. <u>Heated water cannot freeze.</u>
Option B is correct. <u>Heated water will evaporate.</u>
Option C is incorrect. <u>Heated water cannot create condensation.</u>
Option D is incorrect. <u>Water can't melt when heated unless it's been frozen beforehand. </u>
<u />
Answer:
The answer to your question is all the formulas in bold has the same empirical formula
Explanation:
Data
Empirical formula CH₂O
Process
To solve this problem factor the subscripts of each formula and compare the result with the empirical formula given.
a) C₂H₄O₂ factor 2 2(CH₂O)
b) C₃H₆O₃ factor 3 3(CH₂O)
c) CH₂O₂ this formula can not be simplified
d) C₅H₁₀O₅ factor 5 5(CH₂O)
e) C₆H₁₂O₆ factor 6 6(CH₂O)
Answer:
58.0 g/mol
Explanation:
The reaction that takes place is:
- MCl₂ + 2AgNO₃ → 2AgCl + M(NO₃)₂
First we <u>calculate how many moles of silver chloride</u> were produced, using its <em>molar mass</em>:
- 6.41 g AgCl ÷ 143.32 g/mol = 0.0447 mol AgCl
Then we <u>convert AgCl moles into MCl₂ moles</u>, using the <em>stoichiometric ratio</em>:
- 0.0447 mol AgCl *
= 0.0224 mol MCl₂
Now we<u> calculate the molar mass of MCl₂</u>, using the original<em> mass of the sample</em>:
- 2.86 g / 0.0224 mol = 127.68 g/mol
We can write the molar mass of MCl₂ as:
- Molar Mass MCl₂ = Molar Mass of M + (Molar Mass of Cl)*2
- 127.68 g/mol = Molar Mass of M + (35.45 g/mol)*2
Finally we<u> calculate the molar mass</u> of M:
- Molar Mass of M = 57 g/mol
The closest option is 58.0 g/mol.