The empirical formula of the following compounds 0.903 g of phosphorus combined with 6.99 g of bromine.
<h3>What is empirical formula?</h3>
The simplest whole number ratio of atoms in a compound is the empirical formula of a chemical compound in chemistry. Sulfur monoxide's empirical formula, SO, and disulfur dioxide's empirical formula, S2O2, are two straightforward examples of this idea. As a result, both the sulfur and oxygen compounds sulfur monoxide and disulfur dioxide have the same empirical formula.
<h3>
How to find the empirical formula?</h3>
Convert the given masses of phosphorus and bromine into moles by multiplying the reciprocal of their molar masses. The molar masses of phosphorus and bromine are 30.97 and 79.90 g/mol, respectively.
Moles phosphorus = 0.903 g phosphorus
= 0.0293 mol
Moles bromine 6.99 g bromine
=0.0875 mol
The preliminary formula for compound is P0.0293Bro.0875. Divide all the subscripts by the subscript with the smallest value which is 0.0293. The empirical formula is P1.00Br2.99 ≈ P₁Br3 or PBr3
To learn more about empirical formula visit:
brainly.com/question/14044066
#SPJ4
D, they can be renewed quickly rather than non renewables in which nonrenewable take millions of years. Biomass is all around us, so is water (hydro) and the sun is around us too.
Answer:
I think it would be false
Explanation:
All things have a unique freezing/melting point
Answer: 4.4 x 10^-7
Explanation:
The dissociation equation for this reaction is:
MgCO3 (s) → Mg+2 (aq) + CO3-2 (aq)
(Here 0.08 >>> x )

So the solubility MgCO₃ in a solution that containing 0.080 M Mg²⁺ is 4.4 x 10^-7
Answer:
Coal is formed under the ground when pressure is high and there is a lot of heat also to make coal you need dead and composed organisms put together all of this makes a lump of dark coal.
Explanation: