this is lithium ion with a +1 charge
Answer:
The final temperature of the mixture is 22.3°C
Explanation:
Assuming that the 120 g substance at 80°C is water, final temperature of the mixture can be determined using the formula:
Heat lost = Heat gained
Heat = mc∆T where m is mass, c is specific heat capacity of water, and ∆T is the temperature change =<em> Tfinal - Tinitial</em>.
Let the final temperature be T
Heat lost = 120 × c × (T - 80)
Heat gained = 3000 × c × ( T - 20)
Equating the heat lost and heat gained
120 × c × -(T - 80) = 3000 × c × (T - 20)
9600 - 120T = 3000T - 60000
60000 + 9600 = 3000T + 120T
69600 = 3120T
T = 69600/3120
T = 22.3°C
Therefore, the final temperature of the mixture is 22.3°C
The right answer is C.
Oxidation is the loss of electrons. A loss of electrons will appear as an increase in the positive charge of the element as it is converted to an ion. Here we have aluminum have an oxidation state equals zero as a reactant because it is in the element state. After reacting, it combines with three atoms chlorine where each chlorine atom usually has an oxidation state equals -1, therefore, we have -3 charges which have to be neutralized with the 3+ charges of aluminum.
0.73 M is the concentration of sulfuric acid that needed 47 mL of 0.39M potassium hydroxide solution to neutralize a 25 mL sample of the sulfuric acid solution.
Explanation:
Data given:
Volume of the base = 47 ml
molarity of the base= 0.39 M
volume of the acid = 25 ml
molarity of the acid =?
For titration reaction between acid and base, the volume or molarity of any of the base or acid can be determined. The formula used:
Macid X Vacid = Vbase x Mbase
Macid = 
putting the values given in the rearranged equation above:
Macid = 
= 0.73 M
The concentration of the sulphuric acid needed is 0.73 M.
it allows plants to survive and continue to reproduce