Answer:
Mass = 112.54 g
Explanation:
Given data:
Mass of copper = 18 g
How much copper(II) nitrate formed = ?
Solution:
Cu + 2AgNO₃ → Cu(NO₃)₂ + 2Ag
Number of moles of copper:
Number of moles = mass/ molar mass
Number of moles = 18 g/ 29 g/mol
Number of moles = 0.6 mol
Now we will compare the moles of Cu with Cu(NO₃)₂ .
Cu : Cu(NO₃)₂
1 : 1
0.6 : 0.6
Mass of Cu(NO₃)₂ :
Mass = number of moles × molar mass
Mass = 0.6 mol × 187.56 g/mol
Mass = 112.54 g
Explanation:
From the word equation, it shows that when copper oxide reacts with sulphuric acid, a double replacement reaction will occur, where copper and sulphate forms a bond with each other, and so do water.
If Ka for HCN is 6. 2×10^−10 at 25 °C, then the value of Kb for cn− at 25 °C is 1.6 × 10^(-5).
<h3>What is base dissociation constant? </h3><h3 />
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 6.2× 10^(-10)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{6.2×10^(-10) }
= 1.6× 10^(-5)
Thus, the value of base dissociation constant at 25°C is 1.6 × 10^(-5).
learn more about base dissociation constant :
brainly.com/question/9234362
#SPJ4
Answer:
1.20 M
Explanation:
Convert grams of Na₂CO₃ to moles. (50.84 g)/(105.99 g/mol) = 0.4797 mol
Molarity is (moles of solute)/(liters of solvent) = (0.4797 mol)/(0.400 L) = 1.20 M