<span>The answer is 200 mol of water.
The balanced reaction is 2(H2) + (O2) = 2(H2O)
The limiting reactant is O2 as it will be completely consumed first, before hydrogen gas. Hydrogen gas would need at least 105 mol oxygen gas to be consumed; in excess of the 100 mol O2.
Looking at the stoichiometric coefficients, the ratio between water and oxygen is 2:1.
Therefore, the water produced would be 200 moles.</span>
The metalloid that has three valence electrons is Boron~
<u>Answer:</u> The reaction order with respect to A is 'm'
<u>Explanation:</u>
Order of the reaction is the sum of the concentration of terms on which the rate of the reaction actually depends. It is equal to the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical equation.
The given chemical equation follows:

The rate of the above reaction is given to us as:
![Rate=k[A]^m[B]^n](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Em%5BB%5D%5En)
In the above rate law expression, the order with respect to the reactants is not equal to the stoichiometric coefficients. Thus, it is not an elementary reaction.
Order with respect to reactant A = m
Order with respect to reactant B = n
Hence, the reaction order with respect to A is 'm'
Boiling I think! hope you get it right