Answer:
To the best of my knowledge, it is because of the amount of gamma rays is given off.
Explanation:
While both are isotopes, Potassium 40 gives off fewer gamma rays compared to Cobalt 60. Potassium 40 isn't really harmful to humans, but Cobalt 60 (I believe) is used in chemotherapy.
Carbonation isn’t a force that causes such
Answer:
1& 4
Explanation:
1. The average kinetic energy of the particles in a substance determines the substance's temperature.
4. How fast a substance's particles are moving determines how hot or cold the substance is.
Electrons are orbiting around the nucleus in a specific energy level as described in Bohr's atomic model. There are 7 energy levels all in all; 1 being the strongest and nearest to the nucleus, and 7 being the weakest and farthest away from the nucleus. Electron can transfer from one energy level to another. If it increases energy, it absorbs energy. If it goes down an energy level, it emits energy in the form of light. This light can be measure in wavelength through the Rydberg equation:
1/λ =R(1/n₁² -1/n₂²), where
λ is the wavelength
R is the Rydberg constant equal to 1.097 × 10⁻7<span> per meter
n</span>₁ and n₂ are the energy levels such that n₂>n₁
In the Paschen series is an emission spectrum of hydrogen when the energy level is at least n=4. So, this covers n=4 to n=7.
1/λ =(1.097 × 10⁻7)(1/4² -1/7²)
λ = 216.57 ×10⁻⁶ m or 216.57 μm
Answer:
Explanation:
4
N
a
+
O
2
→
2
N
a
2
O
.
By the stoichiometry of this reaction if 5 mol natrium react, then 2.5 mol
N
a
2
O
should result.
Explanation:
The molecular mass of natrium oxide is
61.98
g
⋅
m
o
l
−
1
. If
5
m
o
l
natrium react, then
5
2
m
o
l
×
61.98
g
⋅
m
o
l
−
1
=
154.95
g
natrium oxide should result.
So what have I done here? First, I had a balanced chemical equation (this is the important step; is it balanced?). Then I used the stoichiometry to get the molar quantity of product, and converted this molar quantity to mass. If this is not clear, I am willing to have another go.