Answer:
1/A
Explanation:
beuse the golf ball has mor mass it would take a push from your hand but for the talbe tennis all you need is even a littel flick to it.
According to the Law of Definite Proportions from Dalton's Atomic Theory, each compound is composed of a fixed ratio of each of its individual elements. So, the number of individual elements per 1 particle of that compound is represented by the subscripts. The answers are as follows:
Table sugar: 12 atoms of carbon, 22 atoms of hydrogen; 11 atoms of oxygen; 45 total atoms
Marble: 1 atom of calcium, 1 atom of carbon; 3 atoms of oxygen; 5 total atoms
Natural gas: 1 atom of carbon, 4 atoms of hydrogen; 5 total atoms
Rubbing alcohol: 3 atoms of carbon, 8 atoms of hydrogen; 1 atom of oxygen; 12 total atoms
Table sugar: 1 atom of silicon; 2 atoms of oxygen; 3 total atoms
The temperature of a certain substance can be seen as the average speed of the atoms or molecules in that substance. In the liquid state of a substance the forces between the atoms or molecules are strong enough to keep them together, however with enough freedom to move, unlike in the solid state. If we would have a closer look at the surface of a liquid from sideways, we would see water molecules jumping out of the water and reentering it again. The lower the water temperature would be the lesser the amount of water molecules leaving the liquid phase would be. If water would be heated up and the temperature will reach 100 degrees C at normal atmospheric pressure, more water molecules would leave the water than reentering. Boiling has started. The temperature of the water remains at 100 degrees C, if the heating continues as the average speed of molecules will not increase, only the rate of molecules leaving the water will increase, until all the water in liquid state has been vapourized. The amount of heat needed to vapourize liquid water is called latent heat. Latent heat is a very important driving factor in the atmosphere and thus the weather.
Answer:
It covers changes to the position of equilibrium if you change concentration, pressure or temperature. ... If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to counteract the change
Explanation: