Answer:
Part a)

Part b)

Explanation:
Two sleds are connected by a rope
mass of each sled is given as

now we know that dog exert pulling force on the rope connected to first sled

Part a)
By newton's first law we know that




Part b)
As we know that force between two ropes will pull the sled behind
so we will have



Temperature can be described as an indirect measure of heat energy
So therefore your answer should be letter C
Answer:
Option D => it is moving from high potential to low potential and losing electric potential energy.
Explanation:
Consider a big circle, within the circle we have force, F. That force, F is known as the Electric Field and inside the region or field or space, charged particle or object will be able to exerts force on the other objects.
Electric Field can be represented mathematically by using the formula below; E = kQ/r^2.
So, let us answer the question with what we have considered above. It is worthy of note to know that electric Field moves from a region of higher potential to a region of lower potential. So, any option that says this is correct.
But, there is only one problem and that is the fact that the question asked us about the direction of the movement of proton. Since, proton is s a positive charge, it is going to lose electric potential energy. So, Option D is correct.
Answer:
The acceleration and time are 588 m/s² and 0.071 sec respectively.
Explanation:
Given that,
Speed = 42.0 m/s
Distance = 1.50 m
(a). We need to calculate the acceleration
Using equation of motion


Put the value in the equation


(b). We need to calculate the time
Using equation of motion




Hence, The acceleration and time are 588 m/s² and 0.071 sec respectively.
Answer:
The kinetic energy of the car at the top of the hill is 140280 Joules.
Explanation:
Mass of the car, m = 620 kg
Speed of the car, v = 24 m/s
Height of the hill, h = 30 m
The engine can produce up to 144,000 J of work during that time, W = 144,000 J
We need to find the kinetic energy of the car at the top of the hill. It can be calculated using conservation of mechanical energy as :




So, the kinetic energy of the car at the top of the hill is 140280 Joules. Hence, this is the required solution.