Answer:
The melting and boiling points of molecular compounds are generally quite low compared to those of ionic compounds. This is because the energy required to disrupt the intermolecular forces between molecules is far less than the energy required to break the ionic bonds in a crystalline ionic compound
Answer:
- <em>Hydration number:</em> 4
Explanation:
<u>1) Mass of water in the hydrated compound</u>
Mass of water = Mass of the hydrated sample - mass of the dehydrated compound
Mass of water = 30.7 g - 22.9 g = 7.8 g
<u>2) Number of moles of water</u>
- Number of moles = mass in grams / molar mass
- molar mass of H₂O = 2×1.008 g/mol + 15.999 g*mol = 18.015 g/mol
- Number of moles of H₂O = 7.9 g / 18.015 g/mol = 0.439 mol
<u>3) Number of moles of Strontium nitrate dehydrated, Sr (NO₃)₂</u>
- The mass of strontium nitrate dehydrated is the constant mass obtained after heating = 22.9 g
- Molar mass of Sr (NO₃)₂ : 211.63 g/mol (you can obtain it from a internet or calculate using the atomic masses of each element from a periodic table).
- Number of moles of Sr (NO₃)₂ = 22.9 g / 211.63 g/mol = 0.108 mol
<u>4) Ratio</u>
- 0.439 mol H₂O / 0.108 mol Sr(NO₃)₂ ≈ 4 mol H₂O : 1 mol Sr (NO₃)₂
Which means that the hydration number is 4.
First, find the volume the solution needs to be diluted to in order to have the desired molarity:
You have to use the equation M₁V₁=M₂V₂ when ever dealing with dilutions.
M₁=the starting concentration of the solution (in this case 2.6M)
V₁=the starting volume of the solution (in this case 0.035L)
M₂=the concentration we want to dilute to (in this case 1.2M)
V₂=the volume of solution needed for the dilution (not given)
Explaining the reasoning behind the above equation:
MV=moles of solute (in this case KCl) because molarity is the moles of solute per Liter of solution so by multiplying the molarity by the volume you are left with the moles of solute. The moles of solute is a constant since by adding solvent (in this case water) the amount of solute does not change. That means that M₁V₁=moles of solute=M₂V₂ and that relationship will always be true in any dilution.
Solving for the above equation:
V₂=M₁V₁/M₂
V₂=(2.6M×0.035L)/1.2M
V₂=0.0758 L
That means that the solution needs to be diluted to 75.8mL to have a final concentration of 1.2M.
Second, Finding the amount of water needed to be added:
Since we know that the volume of the solution was originally 35mL and needed to be diluted to 75.8mL to reach the desired molarity, to find the amount of solvent needed to be added all you do is V₂-V₁ since the difference in the starting volume and final volume is equal to the volume of solvent added.
75.8mL-35mL=40.8mL
40.8mL of water needs to be added
I hope this helps. Let me know if anything is unclear.
Good luck on your quiz!
Answer:
B. 1-Butene rightarrow (1) BH3: THF (2)H202, OH-
Explanation:
In the hydroboration of alkenes, an alkene is hydrated to form an alcohol with anti-Markovnikov orientation.
the reagent BH₃:THF is the way that borane is used in organic reactions. The BH₃ adds to the double bond of an alkene to form an alkyl borane. Peroxide hydrogen in basic medium oxidizes the alkyl borane to form an alcohol. Indeed, hydroboration-oxidation converts alkenes to alcohols by adding water through the double bond, with anti-Markovnikov orientation.