A Brønsted-Lowry base is a base is a proton acceptor.
In the only case where this is done is when HCO3- accepts a proton and becomes H2CO3.
In the other cases, HCO3- is donating a proton which makes it an acid.
The exothermic process is a process or reaction that involves a release of energy from the system to its surroundings in various forms usually through heat, light, electricity or sound. In the four given choices, when melting a copper, you try to immerse the metal in heaping coals of fire. The metal will absorb the thermal energy coming from the coal, thus, once you retrieve the metal back, light will be emitted from it as well as heat.
Therefore, the answer is B. MELTING OF COPPER
<span>4FeS2 + 11O2 = 2Fe2O3 + 8SO2</span>
Percent yield is calculated as the actual yield divided by the theoretical yield multiplied by 100.
Actual yield = 55 g ( 1 mol / 159.69 g ) = 0.34 mol Fe2O3
To find for the theoretical yield, we first determine the limiting reactant.
100 g O2 ( 1 mol / 32 g) = 3.13 mol O2
200 g FeS2 (1 mol / 119.98g) = 1.67 mol FeS2
Therefore, the limiting reactant is O2.
Theoretical yield = 3.13 mol O2 ( 2 mol Fe2O3 / 11 mol O2 ) = 0.57 mol Fe2O3
Percent yield = (0.34 mol / 0.57 mol) x 100 = 59.74%
Answer: Option (C) is the correct answer.
Explanation:
When chemical composition of a substance is not changing in a chemical reaction then it is known as a physical change.
For example, when water change state, from ice to steam then it means solid state is changing into gaseous state.
Therefore, it is a physical change.
And, a reaction which causes change in chemical composition is known as a chemical change.
For example, 
Thus, we can conclude that we can see water change state, from ice to steam. This is a physical change in matter.
20 g O2 x 1 mol O2/32 g O = 0.625 mol O2