That is data that you have to collect tho it depends on the experiment assigned by your teacher...
Answer:
4104 Coulombs
Explanation:
charge = time(sec) *current
25*60 =1500+20=1520
2.7A * 1520 sec =4104
4104 C
Answer:
4-oxopentanoic acid.
Explanation:
In this case, we must remember that the Grignard reaction is a reaction in which <u>carbanions</u> are produced. Carboanions have the ability to react with CO2 to generate a new C-C bond and a carboxylate ion. Finally, the acid medium will protonate the carboxylate to produce the <u>carboxylic acid group.
</u>
The molecules that can follow the mechanism described above are the molecules: p-methylbenzoic acid, cyclopentane carboxylic acid and 3-methylbutanoic acid. (See figure 1)
In the case of <u>4-oxopentanoic acid</u>, the possible carbanion <u>will attack the carbonyl group</u> to generate a cyclic structure and an alcohol group (1-methylcyclopropan-1-ol). Therefore, this molecule cannot be produced by this reaction. (See figure 2)
Answer:
actually there are 6 of them
Explanation:
heres the list:
They are beryllium, magnesium, calcium, strontium, barium, and radium.
hope it helpssss :)
Answer:
The order will be:
CCH > CHCH₂ > CH₂CH₃> CH₃
Explanation:
According to Cahn-Ingold-Prelog system we rank the groups based on the atomic number of directly attached atom with the chiral carbon.
For example: between C and H, we rank Carbon first.
If the same atoms are attached for different groups then we prioritized based on the second element with highest atomic number.
For example:
Among CH₃ and C₂H₅, the priority will be given to C₂H₅.
If an atom is double or triple bonded to the directly attached atom then each pi bond is considered to be a new atom.
Hence CH=CH₂ means, that there are two carbons attached to CH carbon.
So the order based on above selection rules will be:
CCH > CHCH₂ > CH₂CH₃> CH₃