1. The iris regulates the amount of light entering the eye
2. The retina receives and organises visual information
3. The lens refracts light rays in a camera
Some are fuel,chemicals,plastics,asphalt,and road oil.
Answer:
The mass percentage of calcium nitrate is 31.23%.
Explanation:
Let the the mass of calcium nitrate be x and mass of potassium chloride be y.
Total mass of mixture = 19.12 g
x + y = 19.12 g..(1)
Mass of solvent = 149 g = 0.149 kg
Freezing point of the solution,
= -5.77 °C
Molal freezing constant of water = 1.86 °C/m =1.86 °C/(mol/kg)
The van't Hoff factor contribution by calcium nitrate is 3 and by potassium chloride is 2.So:
i = 3
i' = 2
Freezing point of water = T = 0°C




On solving we get:
....(2)
Solving equation (1)(2) for x and y:
x =5.973 g
y = 13.147 g
Mass percent of
in the mixture:

The mass percentage of calcium nitrate is 31.23%.
Answer:
6 m/s is the missing final velocity
Explanation:
From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).
Object X had a mass of 300 kg, while object Y had a mass of 100 kg.
Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.
We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.
In numbers, and calling
the initial momentum of object X and
the initial momentum of object Y, we can derive the total initial momentum of the system: 
Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):
Final momentum of the system: 
We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):

The pressure exerted by the block on the table is given by:

where W is the weight of the box, and A is the bottom surface area of the box.
The weight of the box is: 
Substituting into the first equation, we find the pressure:
