Answer:

Explanation:
When we push the box from the bottom of the incline towards the top then by work energy theorem we can say that
Work done by all the forces = change in kinetic energy of the system

here we know that

also we know that the length of the incline is given as

now we have

so we have

Answer:
As the velocity of light is constant so the acceleration of the light is equal to zero.
a= dv/dt
Explanation:
Answer:
Weight is what you get when a certain amount of gravity is acting on that mass, and something, like the surface of a planet, is resisting that action. In space, when falling freely, there's nothing resisting the pull of gravity so weight disappears. Mass however stays.
hope this helps u
Explanation:
To solve this problem, we should recall the law of
conservation of energy. That is, the heat lost by the aluminium must be equal
to the heat gained by the cold water. This is expressed in change in enthalpies
therefore:
- ΔH aluminium = ΔH water
where ΔH = m Cp (T2 – T1)
The negative sign simply means heat is lost. Therefore we
calculate for the mass of water (m):
- 0.5 (900) (20 – 200) = m (4186) (20 – 0)
m = 0.9675 kg
Using same mass of water and initial temperature, the final
temperature T of a 1.0 kg aluminium block is:
- 1 (900) (T – 200) = 0.9675 (4186) (T – 0)
- 900 T + 180,000 = 4050 T
4950 T = 180,000
T = 36.36°C
The final temperature of the water and block is 36.36°C