1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SpyIntel [72]
2 years ago
7

During normal beating, the heart creates a maximum 4.00-mV potential across 0.300 m of a person’s chest, creating a 1.00-Hz elec

tromagnetic wave. (a) What is the maximum electric field strength created? (b) What is the corresponding maximum magnetic field strength in the electromagnetic wave? (c) What is the wavelength of the electromagnetic wave?
Physics
1 answer:
erik [133]2 years ago
4 0

Answer:

(a). The maximum electric field strength is 0.0133 V/m.

(b). The maximum magnetic field strength in the electromagnetic wave is 4.433\times10^{-11}\ T

(c). The wavelength of the electromagnetic wave is 3\times10^{8}\ m

Explanation:

Given that,

Maximum potential = 4.00 mV

Distance = 0.300\ m

Frequency = 1.00 Hz

(a). We need to calculate the maximum electric field strength

Using formula of the potential difference

\Delta V=Ed

E=\dfrac{\Delta V}{d}

E=\dfrac{4.00\times10^{-3}}{0.300}

E=0.0133\ V/m

(b). We need to calculate the maximum magnetic field strength in the electromagnetic wave

Using formula of the maximum magnetic field strength in the electromagnetic wave

B=\dfrac{E}{c}

Put the value into the formula

B=\dfrac{0.0133}{3\times10^{8}}

B=4.433\times10^{-11}\ T

(c). We need to calculate the wavelength of the electromagnetic wave

Using formula of wavelength

c=f\lambda

\lambda=\dfrac{c}{f}

Put the value into the formula

\lambda=\dfrac{3\times10^{8}}{1.00}

\lambda=3\times10^{8}\ m

Hence, (a). The maximum electric field strength is 0.0133 V/m.

(b). The maximum magnetic field strength in the electromagnetic wave is 4.433\times10^{-11}\ T

(c). The wavelength of the electromagnetic wave is 3\times10^{8}\ m

You might be interested in
A 6.5 kg rock thrown down from a 120m high cliff with initial velocity 18 m/s down. Calculate
Olegator [25]

Answer:

See the answers below.

Explanation:

In order to solve this problem we must use the principle of energy conservation. Which tells us that the energy of a body will always be the same regardless of where it is located. For this case we have two points, point A and point B. Point A is located at the top at 120 [m] and point B is in the middle of the cliff at 60 [m].

E_{A}=E_{B}

The important thing about this problem is to identify the types of energy at each point. Let's take the reference level of potential energy at a height of zero meters. That is, at this point the potential energy is zero.

So at point A we have potential energy and since a velocity of 18 [m/s] is printed, we additionally have kinetic energy.

E_{A}=E_{pot}+E_{kin}\\E_{A}=m*g*h+\frac{1}{2}*m*v^{2}

At Point B the rock is still moving downward, therefore we have kinetic energy and since it is 60 [m] with respect to the reference level we have potential energy.

E_{B}=m*g*h+\frac{1}{2}*m*v^{2}

Therefore we will have the following equation:

(6.5*9.81*120)+(0.5*6.5*18^{2} )=(6.5*9.81*60)+(0.5*6.5*v_{B}^{2} )\\3.25*v_{B}^{2} =4878.9\\v_{B}=\sqrt{1501.2}\\v_{B}=38.75[m/s]

The kinetic energy can be easily calculated by means of the kinetic energy equation.

KE_{B}=\frac{1}{2} *m*v_{B}^{2}\\KE_{B}=0.5*6.5*(38.75)^{2}\\KE_{B}=4878.9[J]

In order to calculate the velocity at the bottom of the cliff where the reference level of potential energy (potential energy equal to zero) is located, we must pose the same equation, with the exception that at the new point there is only kinetic energy.

E_{A}=E_{C}\\6.5*9.81*120+(0.5*9.81*18^{2} )=0.5*6.5*v_{C}^{2} \\v_{c}^{2} =\sqrt{2843.39}\\v_{c}=53.32[m/s]

5 0
3 years ago
Match the speed to the section that describes.
inn [45]

Answer:

a=2 ok do it and ........

4 0
3 years ago
A bullet is fired horizontally from a handgun at a target 100.0 m away. If the initial speed of the bullet as it leaves the gun
Lera25 [3.4K]

Answer:

The distance is 0.53 m.

Explanation:

Given that,

Target distance = 100.0 m

Speed of bullet = 300 m/s

We need to calculate the total time

Using formula of time

t=\dfrac{d}{v}

Put the value into the formula

t=\dfrac{100.0}{300}

t=0.33\ sec

Now, consider vertical motion of bullet.

Initial velocity of bullet in vertical direction = 0 m/s

We need to calculate the vertically distance

Using equation of motion

s=ut+\dfrac{1}{2}gt^2

Put the value in the equation

s=0+\dfrac{1}{2}\times9.8\times(0.33)^2

s=0.53\ m

Hence, The distance is 0.53 m.

5 0
3 years ago
All of following are types of kinetic energy EXCEPT for: *
Valentin [98]
Light energy is not kinetic energy
7 0
3 years ago
Chemical messengers that stimulate a specific cellular response.
lisov135 [29]

Answer:

Explanation:

hormones. please mark me brainliest

4 0
2 years ago
Read 2 more answers
Other questions:
  • It’s mid-afternoon on a lovely, sunny day; it’s 60°F, and the sun is 60° above the horizon. Rays from the sun strike the still s
    12·1 answer
  • Knowing that 0.80kg object weighs 8.0n find the acceleration of a 0.80kg stone in free fall
    9·2 answers
  • After the sun becomes a red giant star and makes carbon in its core, why will it not make heavier elements?
    8·1 answer
  • What is the idea behind the law of multiple proportions?
    9·1 answer
  • Two fully charged cylindrical capacitors are connected to two identical batteries. The capacitors are identical except that the
    15·1 answer
  • If a vector that is 3 cm long represents 30 km/h what velocity does a 5cm long vector which is drawn using the same scale
    11·1 answer
  • A jet fighter pilot wishes to accelerate from rest at 5 ggg to reach Mach-3 (three times the speed of sound) as quickly as possi
    9·1 answer
  • The image of the lemon is at point I. What is the size of the image compared to the size of the lemon?
    8·2 answers
  • Describe different atoms of the same element.
    12·2 answers
  • Leslie is investigating which brand of cell phone has the longest lasting battery.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!