Answer:
V = 381.70 m³
Explanation:
ρ air = 1.28 kg / m³
ρ helium = 0.18 kg / m³
R = 4.5 m
Vb = 0.068 m³
mb = 123 kg
To determine the volume of helium in the balloon when fully inflated
V = 4 / 3 π * R ³
V = 4 * π / 3 ( 4.5 m )³
V = 381.70 m³
To determine the mass total
m = ρ helium * V
m = 0.18 kg / m³ * 381.70 m³
m = 68.70 kg
mt = ( 68.70 + 123 )kg
mt = 191.70 kg
<span>F* t = (m x v_final) - (m x v_initial)
200 x t = 50x8 - 50x0
t= 50 x 8 /200
t= 2s </span>
Answer:
a 
b
Explanation:
Generally the force constant is mathematically represented as

substituting values given in the question
=> 
=> 
Generally the workdone in stretching the spring 3.5 m is mathematically represented as

=> 
=> 
Generally the workdone in compressing the spring 2.5 m is mathematically represented as
=>
=>
Answer:

Explanation:
For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

which can also be rewritten as

In our case, we have:
is the initial pressure
is the initial volume
is the final pressure
Solving for V2, we find the final volume:

<em>It's a test on Geography!
</em>