Answer:
The material cost for making one ton of the brass sample that I have is $8149.04.
Explanation:
Density of copper = 8.96 g/cm^3 = 8.96×10^-3 kg/cm^3
Price of copper = $6.13/kg
Price of copper per volume = 8.96×10^-3 kg/cm^3 × $6.13/kg = $0.0549/cm^3
Density of zinc = 7.14 g/cm^3 = 7.14×10^-3 kg/cm^3
Price of zinc = $1.8/kg
Price of zinc per volume = 7.14×10^-3 kg/cm^3 × $1.8/kg = $0.0129/cm^3
Price of brass per volume = 0.0549 + 0.0129 = $0.0678/cm^3
Density of brass I have is 8.32 g/cm^3 = 8.32 g/cm^3 × 1 kg/1000 g × 1 ton/1000 kg = 8.32×10^-6 ton/cm^3
Price = $0.0678/cm^3 ÷ 8.32×10^-6 ton/cm^3 = $8149.04/ton
Answer:
Moment of Inertia, I = 0.016 kgm²
Explanation:
Mass of the ball, m = 0.20 kg
Length of the pitcher's arm, l = 0.28
Radius of the circular arc, r = 0.28 m
Moment of Inertia is given by the formula:
I = mr²
I = 0.20 * 0.28²
I = 0.20 * 0.0784
I = 0.01568
I = 0.016 kgm²
Answer:
80.6 mV
Explanation:
Parameters given:
Number of turns, N = 115
Radius of coil, r = 2.71 cm = 0.0271m
Time taken, t = 0.133s
Initial magnetic field, Bin = 50.1 mT = 0.0501 T
Final magnetic field, Bfin = 90.5 mT = 0.0905 T
Induces EMF is given as:
EMF = [(Bfin - Bin) * N * A] / t
EMF = [(0.0905 - 0.0501) * 115 * pi * 0.0271²] / 0.133
EMF = (0.0404 * 115 * 3.142 * 0.0007344) / 0.133
EMF = 0.0806 V = 80.6 mV
That is true because if the object is moving at Forceful speeds than it will lose more of its kinetic energy
Answer:
Angle of incline is 20.2978°
Explanation:
Given that;
Gravitational acceleration on a planet a = 3.4 m/s²
Gravitational acceleration on Earth g = 9.8 m/s²
Angle of incline = ∅
Mass of the stone = m
Force on the stone along the incline will be;
F = mgSin∅
F = ma
The stone has the same acceleration as that of the gravitational acceleration on the planet.
so
ma = mgSin∅
a = gSin∅
Sin∅ = a / g
we substitute
Sin∅ = (3.4 m/s²) / (9.8 m/s²)
Sin∅ = 0.3469
∅ = Sin⁻¹( 0.3469 )
∅ = 20.2978°
Therefore, Angle of incline is 20.2978°