Helium
neon
argon
krypton
xenon
radon
Answer:D
Explanation:
The high boiling point of HF is not attributable to the dispersion forces mentioned in the question. In HF, a stronger attraction is in operation, that is hydrogen bonding. This ultimately accounts for the high boiling point and not solely the dispersion model as in F2.
In titration, the moles of acid equal moles of base. You were given that 22.75ml of 0.215M NaOH is used, so calculate the number of moles of that base the experiment used in total. After that because you know mol base = mol acid, whatever amount of base you use must be the total amount of acid present in the solution. You were given the volume of the acid, and you have just found the total mols of acid. Using these two information, solve for the concentration. And one more thing, even though I'm pretty sure it won't affect your answer, you should always convert things to the proper units. Since the concentration we're talking about in this problem is molarity, which has the unit mol/L, you should always have all of your numbers in these units. It just make it simpler and will not confuse you
Answer: (C)
The frequency increases as the wavelength decreases
Explanation:
The relation between the frequency and wavelength of a wave is
Frequency = 1 / Wavelength
The Frequency of electromagnetic wave is inversely proportional to the wavelength. So, as the frequency increases, the wavelength of the wave decreases and vise-versa.
The frequency of a wave is number of complete cycles passing a particular point per second. Its S.I unit is Hertz whereas the wavelength of a wave is the distance between two consecutive crest and trough in meters.
So, on increasing the frequency of a wave, there will be more number of the cycles of wave per second which will decrease the distance between the consecutive crest and trough i.e wavelength.