Answer: 996 mmHg
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at NTP, weighs equal to the molecular mass and contains avogadro's number
of particles.
According to the ideal gas equation:

P = Pressure of the gas = ?
V= Volume of the gas = 25.5 L
T= Temperature of the gas = 13°C = (273+13) K = 286K
R= Gas constant = 0.0821 atmL/K mol
n= moles of gas= 1.42
(760mmHg=1atm)
Thus pressure of this gas sample is 996 mm Hg.
<h2>Answer:</h2>
The correct answer is
A) Regular operation
<h2>
Explanation:</h2>
Even those workplaces that have established LO/TO processes face challenges, including: Lack of specific procedures written for each piece of equipment identifying all energy sources and energy isolation devices. Lack of comprehensive safety training for everyone in the workplace. Incorrect tag use.
So, regular operation is the primary cause of LO/TO accidents.
<span>The equation that represents the process of photosynthesis
is: </span>
<span>
</span>
<span>6CO2+12H2O+light->C6H12O6+6O2+6H2O</span>
<span>
</span>
<span>Photosynthesis is the
process in plants to make their food. This involves the use carbon dioxide to
react with water and make sugar or glucose as the main product and oxygen as a
by-product. Since we are not given the mass of CO2 in this problem, we assume that we have 1 g of CO2 available. We calculate as follows:</span>
<span>
</span>
<span>1 g CO2 ( 1 mol CO2 / 44.01 g CO2 ) ( 12 mol H2O / 6 mol CO2 ) ( 18.02 g / 1 mol ) = 0.82 g of H2O is needed</span>
<span>
</span>
However, if the amount given of CO2 is not one gram, then you can simply change the starting value in the calculation and solve for the mass of water needed.
<span>
</span>
the results from the breakdown of proteins and amino acids causing a foul smell