Answer:
It’s true
Explanation:
If we account for all reactants and products in a chemical reaction, the total mass will be the same at any point in time in any closed system. ... The Law of Conservation of Mass holds true because naturally occurring elements are very stable at the conditions found on the surface of the Earth.
Answer:
The density of acetic acid at 30°C = 1.0354_g/mL
Explanation:
specific gravity of acetic acid = (Density of acetic acid at 30°C) ÷ (Density of water at 30°C)
Therefore, the density of acetic acid at 30°C = (Density of water at 30°C) × (Specific gravity of acetic acid at 30°C)
= 0.9956 g/mL × 1.040
= 1.0354_g/mL
Specific gravity, which is also known as relative density, is the ratio of the density of a substance to the density of a specified standard substance.
Generally the standard substance of to which other solid and liquid substances are compared is water which has a density of 1.0 kg per litre or 62.4 pounds/cubic foot at 4 °C (39.2 °F) while gases are normally compared with dry air, with a density of 1.29 grams/litre or 1.29 ounces/cubic foot under standard conditions of a temperature of 0 °C and one standard atmospheric pressure
Answer:
P₂= 116.7 atm
Explanation:
Here apply the Boyle's law equations that states :at constant temperature the volume of a dry mass of a gas is inversely proportional to its pressure.
This is simplified as;
P₁V₁=P₂V₂ where P is pressure and V is volume
Given that;
P₁=1
V₁=1.81 m³
P₂=?
V₂=1.55*10^-2 m³
Apply the formula
1*1.81 =P₂*1.55*10^-2 m³
1.81/1.55*10^-2 =P₂
P₂= 116.7 atm
Answer:
A
Explanation:
CO2 cylinder, 68% full by water capacity, warms up to room temperature (70 oF), the pressure inside the cylinder increases to 837 psi. When the same cylinder reaches 87.9 oF the entire charge becomes a gas no matter what the pressure.