Answer:
0.52rad/s^2
Explanation:
To find the angular acceleration you use the following formula:
(1)
w: final angular velocity
wo: initial angular velocity
θ: revolutions
α: angular acceleration
you replace the values of the parameters in (1) and calculate α:

you use that θ=22 rev = 22(2π) = 44π

hence, the angular acceñeration is 0.52rad/s^2
Explanation :
The interaction between two objects is termed as the collision. The collision can be of two types i.e. elastic collision and inelastic collision.
In this case, two identical carts travel at the same speed toward each other, and then a collision occurs. In an inelastic collision, the momentum before and after the collision remains the same but its kinetic energy gets lost.
After the collision, both the object sticks over each other and moves with one velocity.
Out of the given graph, the graph that shows a perfectly inelastic collision is attached. It shows that after the collision both the carts move with the same velocity.
Answer:
2.6645m
Explanation:
applying motion equations we can find the answer,

Let assume ,
u = starting speed(velocity)
v = Final speed (velocity)
s = distance traveled
a = acceleration
by the time of reaching the highest point subjected to the gravity , the speed should be equal to zero
we consider the motion upwards , in this case the gravitational acceleration should be negative in upwards (assume g =10 m/s2 downwards)
that is,

Answer:
227 m/s
Explanation:
Kinetic energy formula:
- where m = mass of the object (kg)
- and v = speed of the object (m/s)
Let's find the kinetic energy of the 145-g baseball moving at 31.0 m/s.
First convert the mass to kilograms:
Plug known values into the KE formula.
Now we want to find how fast a 2.70-g ping pong ball must move in order to achieve a kinetic energy of 69.6725 J.
First convert the mass to kilograms:
Plug known values into the KE formula.
The ping-pong ball must move at a speed of 227 m/s to achieve the same kinetic energy as the baseball.