We get heat on earth from the sun. Energy from the sun is transferred through space and through earths atmosphere to the earths surface. And since this warms the earth surface it creates heat.
Using K.E=1/2MV^2
answer is 125joules
Answer:
Shown by explanation;
Explanation:
The heat of the sample = mass ×specific heat capacity of the sample × temperature change(∆T)
Assumption;I assume the mass of the samples are : 109g and 192g
∆T= 30.1-21=8.9°c.
The heat of the samples are for 109g are:
0.109 × 4186 × 8.9 =4060.84J
For 0.192g are;
∆T= 67-30.1-=36.9°c
0.192 × 4186×36.9=29656.97J
Answer:
Ax = 0
Ay = 6 m
Bx = 8 cos phi = cos 34 = 6.63 m
By = 8 sin phi = 8 sin (-34) = -4.47 m
Rx = Ax + Bx = 0 + 6.63 = 6.63 m
Ry = Ay + By = 6 - 4.47 = 1.53 m
R = (6.63^2 + 1.53^2)^1/2 = 6.80 m
tan theta = Ry / Rx = 1.53 / 6.8 = ,225
theta = 12.7 deg
Hey there!
There's many ways to do it - like melting and evaporating.
For example, we'll use water. Plain old water in a water bottle. Right now, it's in its liquid state of matter, but say you put it in the freezer for an hour. That would change its state of matter to solid, since it would be solid ice. Now, if you were to put it out in the sun on a blazing hot day for a couple of hours, it would evaporate and become water vapor, a gas. Lastly, if you can cool that water vapor it becomes a liquid again.
Hope this helps!