Answer:
The magnitude of the force on the wire is 2.68 N.
Explanation:
Given that,
Length of the wire, L = 5 m
Magnetic field, B = 0.37 T
Angle between wire and the magnetic field, 
Current in the wire, I = 2.9 A
We need to find the magnitude of the force on the wire. The magnetic force in the wire is given by :

So, the magnitude of the force on the wire is 2.68 N. Hence, this is the required solution.
The rate at which velocity changes is called acceleration. (Attensity exists when velocity varies.) If a moving object changes speed.
Why does time accelerate the rate at which velocity changes?
A motion's acceleration is the rate at which it changes from one velocity to another. A velocity's rate of change with respect to time is referred to as its acceleration. The amount and direction of acceleration are both properties of a vector quantity.
A change in velocity is known as what?
A velocity change's acceleration is measured. Acceleration is the measure of how quickly a velocity changes with time. The acceleration measure used in SI is M/s2.
To know more about velocity visit: brainly.com/question/18084516?
#SPJ4
Un átomo es una porción material menor de un elemento químico que interviene en las reacciones químicas y posee las propiedades características de dicho elemento.
Answer:
The unrealistically large acceleration experienced by the space travelers during their launch is 2.7 x 10⁵ m/s².
How many times stronger than gravity is this force? 2.79 x 10⁴ g.
Explanation:
given information:
s = 220 m
final speed, vf = 10.97 km/s = 10970 m/s
g = 9.8 m/s²
he unrealistically large acceleration experienced by the space travelers during their launch
vf² = v₀²+2as, v₀ = 0
vf² = 2as
a =vf²/2s
= (10970)²/(2x220)
= 2.7 x 10⁵ m/s²
Compare your answer with the free-fall acceleration
a/g = 2.7 x 10⁵/9.8
a/g = 2.79 x 10⁴
a = 2.79 x 10⁴ g