I believe all of these would be known as specific phobias.
The grandfather clock will now run slow (Option A).
<h3>What is Time Period of an oscillation?</h3>
- The time period of an oscillation refers to the time taken by an object to complete one oscillation.
- It is the inverse of frequency of oscillation; denoted by "T".
Now,
, where L is the length and g is the gravitational constant, is the formula for a pendulum's period. - The period will increase as one climbs a very tall mountain because g will slightly decrease.
- Due to this and the previous issue, the clock runs slowly and it seems that one second is longer than it actually is.
Hence, the grandfather clock will now run slow (Option A).
To learn more about the time period of an oscillation, refer to the link: brainly.com/question/26449711
#SPJ4
Answer:
a) -41.1 Joule
b) 108.38 Kelvin
Explanation:
Pressure = P = 290 Pa
Initial volume of gas = V₁ = 0.62 m³
Final volume of gas = V₂ = 0.21 m³
Initial temperature of gas = T₁ = 320 K
Heat loss = Q = -160 J
Work done = PΔV
⇒Work done = 290×(0.21-0.62)
⇒Work done = -118.9 J
a) Change in internal energy = Heat - Work
ΔU = -160 -(-118.9)
⇒ΔU = -41.1 J
∴ Change in internal energy is -41.1 J
b) V₁/V₂ = T₁/T₂
⇒T₂ = T₁V₂/V₁
⇒T₂ = 320×0.21/0.62
⇒T₂ = 108.38 K
∴ Final temperature of the gas is 108.38 Kelvin
Answer:
We know that potential energy of a body;
= mass(m)× gravitational acceleration(g) × height(h)
Lets find out the mass of the body
P.E. = mgh
=> 6500J = mass × 9.8m/s^2 × 12m
=>6500J = mass × ( 9.8 × 12 ) × ( m/s^2 × m)
=> 6500 Nm = m × 117.6 × m^2 / s^2
=> 6500/117.6 Ns^2/m = mass [°.° Ns^2/m = kg]
=> 55.272 Kg = mass
Therefore the mass of the body = 55.272 kg ~ <em>6</em><em>0</em><em> </em><em>k</em><em>g</em><em> </em>(Ans)
Hope it helps you
Answer:
Explanation:
Given
Horizontal bar rises with 300 mm/s
Let us take the horizontal component of P be


where
is angle made by horizontal bar with x axis
Velocity at y=150 mm

thus 
position of


Velocity at this instant

