The most appropriate answer is D ! temperature !
as when temperature increases KE increases and the collision factor and frequency increases !
Answer:
electrons
Reason:
neutrons and protons are inside the nucleus
Answer:

Explanation:
Hello,
In this case, given the 0.0990 moles of the salt are soluble in 1.00 L of water only, we can infer that the molar solubility is 0.099 M. Next, since the dissociation of the salt is:

The concentrations of the A and B ions in the solution are:
![[A]=0.099 \frac{molAB_3}{L}*\frac{1molA}{1molAB_3} =0.0099M](https://tex.z-dn.net/?f=%5BA%5D%3D0.099%20%5Cfrac%7BmolAB_3%7D%7BL%7D%2A%5Cfrac%7B1molA%7D%7B1molAB_3%7D%20%20%3D0.0099M)
![[B]=0.099 \frac{molAB_3}{L}*\frac{3molB}{1molAB_3} =0.000.297M](https://tex.z-dn.net/?f=%5BB%5D%3D0.099%20%5Cfrac%7BmolAB_3%7D%7BL%7D%2A%5Cfrac%7B3molB%7D%7B1molAB_3%7D%20%20%3D0.000.297M)
Then, as the solubility product is defined as:
![Ksp=[A][B]^3](https://tex.z-dn.net/?f=Ksp%3D%5BA%5D%5BB%5D%5E3)
Due to the given dissociation, it turns out:
![Ksp=[0.099M][0.297M]^3\\\\Ksp=2.59x10^{-3}](https://tex.z-dn.net/?f=Ksp%3D%5B0.099M%5D%5B0.297M%5D%5E3%5C%5C%5C%5CKsp%3D2.59x10%5E%7B-3%7D)
Regards.
Answer:
The correct answer is D Vaporizing a substance.
<u>Answer:</u> The potential of electrode is -0.79 V
<u>Explanation:</u>
When zinc is dipped in zinc sulfate solution, the electrode formed is 
Reduction reaction follows: 
To calculate the potential of electrode, we use the equation given by Nernst equation:
![E_{(Zn^{2+}/Zn)}=E^o_{(Zn^{2+}/Zn)}-\frac{0.059}{n}\log \frac{[Zn]}{[Zn^{2+}]}](https://tex.z-dn.net/?f=E_%7B%28Zn%5E%7B2%2B%7D%2FZn%29%7D%3DE%5Eo_%7B%28Zn%5E%7B2%2B%7D%2FZn%29%7D-%5Cfrac%7B0.059%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BZn%5D%7D%7B%5BZn%5E%7B2%2B%7D%5D%7D)
where,
= electrode potential of the cell = ?V
= standard electrode potential of the cell = -0.76 V
n = number of electrons exchanged = 2
(concentration of pure solids are taken as 1)
![[Zn^{2+}]=0.1M](https://tex.z-dn.net/?f=%5BZn%5E%7B2%2B%7D%5D%3D0.1M)
Putting values in above equation, we get:

Hence, the potential of electrode is -0.79 V