Answer:
H₂SO₄ will be the limiting reagent.
Explanation:
The balanced reaction is:
2 Al(OH)₃ + 3 H₂SO₄ → Al₂(SO₄)₃ + 6 H₂O
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
To determine the limiting reagent, it is possible to use the reaction stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction).
You can use a simple rule of three as follows: if by stoichiometry 2 moles of Al(OH)₃ reacts with 3 moles of H₂SO₄, how much moles of H₂SO₄ will be needed if 0.4 moles of Al(OH)₃ react?

moles of H₂SO₄= 0.6 moles
But 0.6 moles of H₂SO₄ are not available, 0.40 moles are available. Since you have less moles than you need to react with 0.4 moles of Al(OH)₃, H₂SO₄ will be the limiting reagent.
Answer:
The correct answer is option e.
Explanation:
The lead acid battery consists lead as an anode and lead oxide as a cathode. Both the electrodes are suspended in dilute sulfuric acid which act as an electrolyte.
At anode: Oxidation

At cathode: Reduction

The answer would be C: energy is released to form radiation.
The volume of Helium gas needed for storage is 2.00 L (answer C)
<u><em> calculation</em></u>
The volume of Helium is calculated using ideal gas equation
That is Pv =nRT
where;
P( pressure) = 203 KPa
V(volume)=?
n(number of moles) = 0.122 moles
R(gas constant) = 8.314 L.Kpa/mol.K
T(temperature)= 401 K
make V the subject of the formula by diving both side by P
V=nRT/p
V={[0.122 moles x 8.314 L. KPa/mol.K x 401 K] / 203 KPa} = 2.00 L
A triple beam balance is used to measure mass