Position of element in periodic table is depend on the electronic configuration of element.
Element with 62 electrons has following electronic configuration:
<span>1s2 2s2 </span>2p6 <span>3s2 </span>3p6 4s2 3d10 4p6 <span>5s2 </span>4d10 5p6 4f6 <span>6s<span>2
</span></span>
From above electronic configuration, it can be seen that highest value of principal quantum number, where electron is present, is 6. Hence, element belongs to 6th period.
Further, last electron has entered f-orbital, hence it is a f-block element. Position of f-block element is the bottom of periodic table.
Further, there are 6 electrons in f-orbital. Hence, it is the 6th f-block element in 6th period of periodic table.
Answer:
Nuclear reaction occurs when an elementary particle or another nucleus has enough energy to disturb internal structure of a bombarded nucleus to such a level that it undergoes a transition to a different state.
In 3.8 moles of li, there are about <span>0.144071459 grams. I assume that you are talking about lithium.</span>
Answer:
Sc (Scandium) has the given electronic configuration.
Explanation:
The given electronic configuration is [Ar]
.
The last electron enters the d-subshell and hence is a d-block element known as Scandium with chemical symbol Sc.
For 4s subshell
n=4,l=0 and m ranges from -l to +l so m=0.
For 3d subshell
n=3,l=2 and m ranges from -l to +l so m can take values -2,-1,0,+1,+2
Note:
l values for subshells:
s : 0
p : 1
d : 2
f : 3 and so on.
Answer:
see explanation
Explanation:
The process of ionization to produce cations is endothermic. For formation of Ca⁺² two ionization steps need be illustrated as follows...
1st ionization step: Ca° + 590Kj => Ca⁺ + e⁻
2nd ionization step: Ca⁺ + 1151Kj => Ca⁺² + e⁻
__________________________________-
Net Ionization Rxn: Ca° + 1741Kj => Ca⁺² + 2e⁻