PubChem CID: 142982
Chemical Names: 4-Ethyl-2,2-dimethylhexane; Hexane, 4-ethyl-2,2-dimethyl-; 52896-99-8; 2,2-dimethyl-4-ethylhexane; AC1L3M80; Hexane,4-ethyl-2,2-dimethyl- More...
Molecular Formula: C10H22
Molecular Weight: 142.286 g/mol
InChI Key: QHLDBFLIDFTHQI-UHFFFAOYSA-N
Balanced equation is
HBr + NaOH ----> NaBr + H2O
Using molar masses
80.912 g HBr reacts with 39.997 g of Naoh to give 18.007 g water
so 1 gram of NaOH reacts with 2.023 g of HBR
and 5.7 reacts with 11.531 g HBr so we have excess HBr in this reaction
Mass of water produced = (5.7 * 18.007 / 39.997 = 2.6 g to 2 sig figs
Answer:
The correct answer is "transferred; unequally shared; equally shared".
Explanation:
Ionic bonding occurs when a positively charged atom (cation) interacts with a negatively charged atom (anion). In ionic bonding, the cation transfers its electron to the anion. In polar covalent bonding, electrons are unequally shared. This means that the electrons spend more time in an atom than the other, which gives partial positive and negative charges to the atoms. On the other hand in nonpolar covalent bonding, the electrons are equally shared and no charges are created.
<u>Given information:</u>
Concentration of NaF = 0.10 M
Ka of HF = 6.8*10⁻⁴
<u>To determine:</u>
pH of 0.1 M NaF
<u>Explanation:</u>
NaF (aq) ↔ Na+ (aq) + F-(aq)
[Na+] = [F-] = 0.10 M
F- will then react with water in the solution as follows:
F- + H2O ↔ HF + OH-
Kb = [OH-][HF]/[F-]
Kw/Ka = [OH-][HF]/[F-]
At equilibrium: [OH-]=[HF] = x and [F-] = 0.1 - x
10⁻¹⁴/6.8*10⁻⁴ = x²/0.1-x
x = [OH-] = 1.21*10⁻⁶ M
pOH = -log[OH-] = -log[1.21*10⁻⁶] = 5.92
pH = 14 - pOH = 14-5.92 = 8.08
Ans: (b)
pH of 0.10 M NaF is 8.08