Before a person walks through burning coal, the person will make sure their feet are very wet. When they start walking on the coal, this moisture will evaporate and form a protective gas layer underneath the person's feet. You can see examples of this if you happen to drip some water on a hot stove or any very hot surface. The water will very easily glide around on top of a newly formed layer of air underneath it -- like air hockey pucks on an air hockey table. Note that when someone walks through burning coal, typically this is also done very quickly to prevent a great deal of exposure to possible harm. By walking quickly, thinking positively, and letting the water cushion you from immediate danger over a short distance, such a task is possible. You may have also heard of physics teachers demonstrating how this principle works by sticking their hand first in a bucket of water and then quickly in a bucket of boiling molten lead. In the lead, their hand is protected briefly by a layer of gas from the evaporated water (the water vapor). I'm fairly sure that there is a name for this particular layer of gas, but I'm afraid the name is beyond me at the moment. In other words, water vapor has a low heat capacity and poor thermal conduction. Very often, the coals or wood embers that are used in fire walking also have a low heat capacity. Sweat produced on the bottom of people's feet also helps form a protective water vapor. All of this together makes it possible, if moving quickly enough, to walk across hot coals without getting burned. WARNING: Do not attempt to perform any of the actions described above. You can seriously injure yourself. Answered by: Ted Pavlic, Electrical Engineering Undergrad Student, Ohio St. (citing my source)
200n because it's 2×5=10so maybe try solving the problem like that ok does that help
1. Avogadro's hypothesis. Avogadro hypothesized that equal volumes of all gases (at the same pressure) will have the same number of molecules. From PV=nRT, we know that one mole of gas takes up 22.4 L
2. Mass number. The mass number is the sum of the protons and neutrons in the nucleus so Carbon 12 has an atomic number of 6 which indicates 6 protons, and a mass number of 12 so 12-6 = 6 neutrons.
3. Avogadro's number. Avogadro's number is the number of units in one mole of any substance, which has been defined as 6.02 x10^23
4. Isotopes are the different forms of a single element. They differ in neutrons. One example is Hydrogen which has three isotopes Protium, Deuterium, and Tritium.
5. Atomic mass. The mass of the atom is equal to the sum of the protons and the neutrons as electrons are so small their mass is negligible. This is not exactly the same as the mass number because this number takes into account the different isotopes
6. mole A mole has the same number of entities as 12 grams of carbon 12, it is expressed by Avogadro's number so 1 mole = 6.02 x10^23 atoms or molecules, etc
7. molar mass- the amount that one mole of substance weighs. For carbon 12, 12 grams has one mole of atoms by definition. So for carbon 12, the molar mass is 12 g/mol
A transverse wave and a longitudinal wave.
Transverse:wave particles move at medium speed in perpendicular to the direction that the waves move
Longitudinal:wave particles move at medium speed in parallel to the direction that the wave moves
Hope this helps ^-^
Answer:
the image is behind the mirror
virtual
erect(not inverted)
larger than the object