Complete question is;
A baseball bat is a lever. Which of the following explains how a baseball bat differs from a lever like a pry bar?
A) In a baseball bat, effort force is smaller and is applied over a large distance, while the resistance force is smaller and is applied over a long distance.
B) In a baseball bat, effort force is smaller and is applied over a large distance, while the resistance force is smaller and is applied over a short distance.
C) In a baseball bat, effort force is larger and is applied over a short distance, while the resistance force is smaller and is applied over a long distance.
D) In a baseball bat, effort force is larger and is applied over a short distance, while the resistance force is smaller and is applied over a short distance.
Answer:
C) In a baseball bat, effort force is larger and is applied over a short distance, while the resistance force is smaller and is applied over a long distance.
Explanation:
The correct answer is option C. This is because unlike in a pry bar, the effort force when swinging a baseball bat is larger and it is applied over a short distance; and in return the resisting force is smaller and it's applied over a long distance.
Answer: ⇒ Answer is 3
<h2>Explanation
: momentum = mass × velocity</h2>
"A small force may produce a large change in momentum by acting on a very massive object".
THEY HAVEN'T GIVEN US THE TIME PERIOD NOR THE DISTANCE TRAVELED. THEREFORE WE CANNOT ACTUALLY DECIDE IF THE FORCE IS KEPT FOR A LONG TIME OR SHORT TIME. ANYWAYS SINCE THE MASS IS GIVEN AS MASSIVE , THE MOMENTUM SHOULD BE DEFINITELY HIGH.
WHY I SAY OTHERS ARE WRONG:
1) For a small force to give a large change in momentum, it should act for a long time interval.
2) By applying a large force for a short time interval, the change of momentum should be large.
3) Correct answer.
4) Acting over a short distance can be the same as acting over a short period of time.Therefore the distance should be large in order for a larger momentum.
I HOPE IT HELPS!
Answer:
100°c = 373.15 K
100°C=212°F
Explanation:
To convert Celsius to Kelvin, we need the following equation.
°C + 273.15 = K
100°C + 273.15 = K
373.15 = K
Therefore, 100°c = 373.15 K
F = 9/5C + 32
=9/5(100)+32
= (180) + 32
= 212°
Therefore,
100°C=212°F
A red apple absorbs all colors of visible light except red, so red light
is the only light left to bounce off of the apple toward our eyes.
(This is a big part of the reason that we call it a "red" apple.)
Here's how the various items on the list make out when they hit the apple:
<span>Red . . . . . reflected
Orange . . absorbed
Yellow . . . </span><span><span>absorbed
</span>Green . </span><span><span>. . absorbed
</span>Blue . . </span><span><span>. . absorbed
</span>Violet .</span><span> . . absorbed</span>
<span>Black . . . no light; not a color
White . . . has all colors in it</span>
Answer:
E = 2k 
Explanation:
Gauss's law states that the electric flux equals the wax charge between the dielectric permeability.
We must define a Gaussian surface that takes advantage of the symmetry of the problem, let's use a cylinder with the faces perpendicular to the line of charge. Therefore the angle between the cylinder side area has the same direction of the electric field which is radial.
Ф = ∫ E . dA = E ∫ dA = q_{int} /ε₀
tells us that the linear charge density is
λ = q_ {int} /l
q_ {int} = l λ
we substitute
E A = l λ /ε₀
is area of cylinder is
A = 2π r l
we substitute
E =
E =
the amount
k = 1 / 4πε₀
E = 2k 