Answer:
a)
= 3,375 cm
, b) f₀ = 77.625 cm
Explanation:
The magnification of a telescope is, to see at the far point of vision (infinity image)
m = - f₀ / 
The length of the tube is
L = f₀ + 
a) The focal length of the eyepiece
L = - m
+ 
L =
(1-m)
= L / (1-m)
Let's calculate
= 81.0 / (1 - (-23.0)
= 3,375 cm
b) the focal length of the target
f₀ = -m
f₀ = 23 (3.68)
f₀ = 77.625 cm
When sounds at two different frequencies are combined,
two new sounds are created ... at the sum and difference
of the original frequencies.
Combining two sounds at 490 Hz and 488 Hz creates
beats at 978 Hz and 2 Hz.
The fluttering "wah wah" effect of the 2 Hz beat is much more
noticeable than the new sound at 978 Hz.
Concentration involves the relative amounts of solvent and solute in a solution, when strength is related to the extent to which a substance dissociates :))
i hope this is helpful
have a nice day
<span>Extremely powerful single waves have no effect on ships at sea since the depth of water allows the energy to be distributed over hundreds and thousands of feet. In deep water, the bigger the wave, the faster it moves and the slower the surface changes height. As the wave gets into shallow waters, it slows down and can start to pile up to large heights.</span>
Answer:0.0704 kg
Explanation:
Given
initial Absolute pressure
=210+101.325=311.325



as the volume remains constant therefore



therefore Gauge pressure is 337.44-101.325=236.117 KPa
Initial mass 

Final mass 

Therefore
=0.91-0.839=0.0704 kg of air needs to be removed to get initial pressure back