Answer:
Heat
Explanation:
Energy that is transferred from a warmer object to a cooler object is called heat.
Answer:
Approximately
(assuming that the projectile was launched at angle of
above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing
is the same as the altitude
at which this projectile was launched:
.
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is
(upwards,) the vertical velocity right before landing would be
(downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be
. In other words,
.
Hence, the time it takes to achieve a (vertical) velocity change of
would be:
.
Hence, this projectile would be in the air for approximately
.
First, we calculate for the weight of the object by multiplying the given mass by the acceleration due to gravity which is equal to 9.8 m/s²
Weight = (14 kg)(9.8 m/s²)
Weight = 137.2 N
The component of the weight that is along the surface of the inclined plane is equal to this weight times the sine of the given angle.
Weight = (137.2 N)(sin 52°)
weight = 108.1 N
Answer: The magnitude of force per length that each wire exert on the other wire is 2.67×10^-5 N/m.
The force is repulsive.
Explanation: Please see the attachments below
Answer:
40.0⁰
Explanation:
The formula for calculating the magnetic flux is expressed as:
where:
is the magnetic flux
B is the magnetic field
A is the cross sectional area
is the angle that the normal to the plane of the loop make with the direction of the magnetic field.
Given
A = 0.250m²
B = 0.020T
= 3.83 × 10⁻³T· m²
3.83 × 10⁻³ = 0.020*0.250cosθ
3.83 × 10⁻³ = 0.005cosθ
cosθ = 0.00383/0.005
cosθ = 0.766
θ = cos⁻¹0.766
θ = 40.0⁰
<em>Hence the angle normal to the plane of the loop make with the direction of the magnetic field is 40.0⁰</em>