I think the correct answer would be the last option. A kind of variable that a researcher purposely changes in an investigation is the independent variable. It is the value that does not depend to any change in any variable involved. Instead, it is the one that affects the other variable called the dependent variable. The dependent variable is the variable that is being tested or studied. Also, along with these two there are variables that are held equal all through out the research. These are called the constants. These constants are factors that might affect the dependent variable that is why they are held constant to prevent more errors.
<span>
if it was possible to triangulate all objects it would give the most accurate answer. So yes, it is the prefered method. However as this is not the case other methods are used, less accurate but more practical</span>
Answer:
<h3>The answer is 500 km </h3>
Explanation:
The distance covered by an object given it's velocity and time taken can be found by using the formula
<h3>distance = average velocity × time</h3>
From the question
average speed = 250 km/h
time = 2 hrs
We have
distance = 250 × 2
We have the final answer as
<h3>500 km</h3>
Hope this helps you
Answer:
–8.35 m/s²
Explanation:
We'll begin by converting 104 km/h to m/s. This can be obtained as follow:
3.6 Km/h = 1 m/s
Therefore,
104 km/h = 104 km/h × 1 m/s / 3.6 Km/h
104 km/h = 28.89 m/s
Thus, 104 km/h is equivalent to 28.89 m/s.
Finally, we shall determine the deceleration of the car. This can be obtained as follow:
Initial velocity (u) = 28.89 m/s
Final velocity (v) = 0 m/s
Distance (s) = 50 m
Deceleration (a) =?
v² = u² + 2as
0² = 28.89² + (2 × a × 50)
0 = 834.6321 + 100a
Collect like terms
0 – 834.6321 = 100a
–834.6321 = 100a
Divide both side by 100
a = –834.6321 / 100
a = –8.35 m/s²
Thus, the deceleration of the car is –8.35 m/s².
P=4800kgm/s
As
p=mΔv
where p is momentum, m is mass and v is velocity
Given values is
m =1200kg
Δv= 17m/s-13m/s=4m/s
Now
p=mΔv
p=(1200kg)*(4m/s)
p=4800kgm/s