Answer: 
Explanation:
According to Newton's law of universal gravitation:
Where:
is the module of the force exerted between both bodies
is the universal gravitation constant.
and
are the masses of both bodies.
is the distance between both bodies
In this case we have two situations:
1) Two bags with masses
and
mutually exerting a gravitational attraction
on each other:
(1)
(2)
(3)
2) Two bags with masses
and
mutually exerting a gravitational attraction
on each other (assuming the distance between both bags is the same as situation 1):
(4)
(5)
(6)
Now, if we isolate
from (3):
(7)
Substituting
found in (7) in (6):
(8)
(9)
Simplifying, we finally get the expression for
in terms of
:
Answer:
The moment of inertia about the rotation axis is 117.45 kg-m²
Explanation:
Given that,
Mass of one child = 16 kg
Mass of second child = 24 kg
Suppose a playground toy has two seats, each 6.1 kg, attached to very light rods of length r = 1.5 m.
We need to calculate the moment of inertia
Using formula of moment of inertia


m = mass of seat
m₁ =mass of one child
m₂ = mass of second child
r = radius of rod
Put the value into the formula


Hence, The moment of inertia about the rotation axis is 117.45 kg-m²
Answer:
See below
Explanation:
See attached diagram
280 km east then 190 km north
Use Pythagorean theorem to find the resultant displacement
d^2 = 280^2 + 190^2
d = 338.4 km
Angle will be arctan ( 190/280) = 34.16 °
A calorimeter measures the amount of heat in a chemical reaction. So the answer would be C, specific heat.
Answer:
it’s an example of a generator.
Explanation: