1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
3 years ago
15

What is the quantity of motion ??

Physics
1 answer:
horsena [70]3 years ago
3 0

Answer:

The quantity of motion is the measure of the same, arise from the velocity and quantity of matter conjointly. In other words, rather than defining the quantity of motion of a given object as simply the kinematic velocity v of the object, he defined it as the product mv, where m is the mass of the object.

Explanation:

You might be interested in
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.0 N/cm. The block becomes attached t
Yuliya22 [10]

Answer:

a) W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

b) W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

c) V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

d)  d_1 =0.183m or 18.3 cm

Explanation:

For this case we have the following system with the forces on the figure attached.

We know that the spring compresses a total distance of x=0.10 m

Part a

The gravitational force is defined as mg so on this case the work donde by the gravity is:

W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

Part b

For this case first we can convert the spring constant to N/m like this:

2 \frac{N}{cm} \frac{100cm}{1m}=200 \frac{N}{m}

And the work donde by the spring on this case is given by:

W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

Part c

We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

W_{g} +W_{spring} = K_{f} -K_{i}=0- \frac{1}{2} m v^2_i

And if we solve for the initial velocity we got:

V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

Part d

Let d1 represent the new maximum distance, in order to find it we know that :

-1/2mV^2_i = W_g + W_{spring}

And replacing we got:

-1/2mV^2_i =mg d_1 -1/2 k d^2_1

And we can put the terms like this:

\frac{1}{2} k d^2_1 -mg d_1 -1/2 m V^2_i =0

If we multiply all the equation by 2 we got:

k d^2_1 -2 mg d_1 -m V^2_i =0

Now we can replace the values and we got:

200N/m d^2_1 -0.21kg(9.8m/s^2)d_1 -0.21 kg(5.50 m/s)^2) =0

200 d^2_1 -2.058 d_1 -6.3525=0

And solving the quadratic equation we got that the solution for d_1 =0.183m or 18.3 cm because the negative solution not make sense.

5 0
2 years ago
A van starts off 152 miles directly north from the city of Springfield. It travels due east at a speed of 25 miles per hour. Aft
erastovalidia [21]

Answer:

12.84 miles per hour

Explanation:

Given:

Vertical distance of starting point of van from Springfield (d) = 152 miles

Speed in east direction (s) = 25 mph

Distance traveled in east direction (e) = 91 miles

Let the direct distance from Springfield of the van be 'x' at any time 't'.

Now, from the question, it is clear that, the vertical distance of van is fixed at 152 miles and only the horizontal distance is changing with time.

Now, consider a right angled triangle SNE representing the given situation.

Point S represents Springfield, N represents the starting point of van and E represents the position of van at any time 't'.

SN = d = 152 miles (fixed)

Now, using the pythagorean theorem, we have:

SE^2=SN^2+NE^2\\\\x^2=d^2+e^2\\\\x^2=(152)^2+e^2----(1)

Now, differentiating both sides with respect to time 't', we get:

2x\frac{dx}{dt}=0+2e\frac{de}{dt}\\\\\frac{dx}{dt}=\frac{e}{x}\frac{de}{dt}

Now, we are given speed as 25 mph. So, \frac{de}{dt}=25\ mph

Also, when e=91\ mi, we can find 'x' using equation (1). This gives,

x^2=23104+(91)^2\\\\x=\sqrt{31385}=177.16\ mi

Now, plug in the values of 'e' and 'x' and solve for \frac{dx}{dt}. This gives,

\frac{dx}{dt}=\frac{91}{177.16}\times 25\\\\\frac{dx}{dt}=12.84\ mph

Therefore, the distance between the van and Springfield is changing at a rate of 12.84 miles per hour

6 0
3 years ago
Estimate how much solar energy reaches the earth per year (in Joule).
Alexxandr [17]

Each hour 430 quintillion Joules of energy from the sun hits the Earth.

In a year it is very hard to determine because of the night and different light levels.

4 0
3 years ago
GIZMO
CaHeK987 [17]
It is A or D but I believe A
5 0
3 years ago
The maximum current output of a 60 ω circuit is 11 A. What is the rms voltage of the circuit?
bezimeni [28]

Answer:

660V

Explanation:

V=IR

V=11×60

=660V

hope this helps

please like and Mark as brainliest

8 0
3 years ago
Other questions:
  • Explain why a battery causes charge to flow spontaneously when the battery is inserted in a circuit
    6·1 answer
  • Which type of element typically loses an electron to become an ion?
    14·1 answer
  • What was anton van leeuwenhoek famous for
    13·1 answer
  • Match the correct term with each part of the wave
    7·1 answer
  • What is the mass of an object that requires 100N of force in order to accelerate it at 10m/s2 ?
    8·2 answers
  • After a car's engine has been running for a while, if you stand near the car's engine you can often feel heat coming from the en
    7·1 answer
  • One normal afternoon in undisclosed City X, the chocolate factory workers overload the Easter egg machine. A group of angsty tee
    14·1 answer
  • The more POWER you use to move an object, the more work you do.
    9·2 answers
  • What type of circuit is pictured?<br> O Parallel Circuit<br> Series Circuit
    13·2 answers
  • Jail
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!