Answer:
352,088.37888Joules
Explanation:
Complete question;
A hiker of mass 53 kg is going to climb a mountain with elevation 2,574 ft.
A) If the hiker starts climbing at an elevation of 350 ft., what will their change in gravitational potential energy be, in joules, once they reach the top? (Assume the zero of gravitational potential is at sea level)
Chane in potential energy is expressed as;
ΔGPH = mgΔH
m is the mass of the hiker
g is the acceleration due to gravity;
ΔH is the change in height
Given
m = 53kg
g = 9.8m/s²
ΔH = 2574-350 = 2224ft
since 1ft = 0.3048m
2224ft = (2224*0.3048)m = 677.8752m
Required
Gravitational potential energy
Substitute the values into the formula;
ΔGPH = mgΔH
ΔGPH = 53(9.8)(677.8752)
ΔGPH = 352,088.37888Joules
Hence the gravitational potential energy is 352,088.37888Joules
Answer:
<em>Correct choice: b 4H</em>
Explanation:
<u>Conservation of the mechanical energy</u>
The mechanical energy is the sum of the gravitational potential energy GPE (U) and the kinetic energy KE (K):
E = U + K
The GPE is calculated as:
U = mgh
And the kinetic energy is:

Where:
m = mass of the object
g = gravitational acceleration
h = height of the object
v = speed at which the object moves
When the snowball is dropped from a height H, it has zero speed and therefore zero kinetic energy, thus the mechanical energy is:

When the snowball reaches the ground, the height is zero and the GPE is also zero, thus the mechanical energy is:

Since the energy is conserved, U1=U2
![\displaystyle mgH=\frac{1}{2}mv^2 \qquad\qquad [1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%3D%5Cfrac%7B1%7D%7B2%7Dmv%5E2%20%20%20%20%5Cqquad%5Cqquad%20%5B1%5D)
For the speed to be double, we need to drop the snowball from a height H', and:

Operating:
![\displaystyle mgH'=4\frac{1}{2}m(v)^2 \qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%27%3D4%5Cfrac%7B1%7D%7B2%7Dm%28v%29%5E2%20%5Cqquad%5Cqquad%20%5B2%5D)
Dividing [2] by [1]

Simplifying:

Thus:
H' = 4H
Correct choice: b 4H
Based on the calculations, the speed required for this satellite to stay in orbit is equal to 1.8 × 10³ m/s.
<u>Given the following data:</u>
- Gravitational constant = 6.67 × 10⁻¹¹ m/kg²
- Mass of Moon = 7.36 × 10²² kg
- Distance, r = 4.2 × 10⁶ m.
<h3>How to determine the speed of this satellite?</h3>
In order to determine the speed of this satellite to stay in orbit, the centripetal force acting on it must be sufficient to change its direction.
This ultimately implies that, the centripetal force must be equal to the gravitational force as shown below:
Fc = Fg
mv²/r = GmM/r²
<u>Where:</u>
- m is the mass of the satellite.
Making v the subject of formula, we have;
v = √(GM/r)
Substituting the given parameters into the formula, we have;
v = √(6.67 × 10⁻¹¹ × 7.36 × 10²²/4.2 × 10⁶)
v = √(1,168,838.095)
v = 1,081.13 m/s.
Speed, v = 1.8 × 10³ m/s.
Read more on speed here: brainly.com/question/20162935
#SPJ1
Answer:
600,000,000 degree C
Explanation:
This stage is the last stage and is refereed to as supernova. In the beginning of this stage, gravity pulls the inner core and crush it, due to which fusion of atoms starts. Carbon and Oxygen fuse together and the temperature is about of 600,000,000 degree C.
The most heavier atom that can be formed out of this fusion is the iron. The moment all the atoms becomes of iron, no further fusion is possible hence that body emits radiation of high intensity and collapse causing a big supernova.