Definitely true, surveys and interviews aren’t flawless but you can collect lots of data from them
Answer:
a) 1450watts
b) 564watts
c) 1.11
Explanation:
Power consumed = IV
I is the current rating
V is the operating voltage
If a blow-dryer and a vacuum cleaner each operate with a voltage of 120 V and the current rating of the blow-dryer is 12 A, while that of the vacuum cleaner is 4.7 A then their individual power rating is calculated thus;
a) For blow-dryer
Operating voltage = 120V
Its current rating = 12A
Power consumed = IV
= 120×12
= 1440watts
b) For vacuum cleaner:
Operating voltage is the same as that of blow dryer = 120V
Its current rating = 4.7A
Power consumed = IV
= 120×4.7
= 564watts
c) Energy used = Power consumed × time taken
Energy used = Power × time
Energy used by blow dryer = 1440×20×60
= 1,728,000Joules
Energy used up by vacuum cleaner = 564×46×60
= 564×2760
= 1,556,640Joules
Ratio of the energy used by the blow-dryer in 20 minutes to the energy used by the vacuum cleaner in 46 minutes will be 1,728,000/1,556,640 = 1.11
No, there are not any carbon atoms inside this compound.
The compound is
. This means there are 3 "Ca" atoms and 2 "N" atoms.
- Ca is calcium
- N is nitrogen
Thus, none of the elements in this compound are carbon, meaning there are no carbon atoms. Let me know if you need any clarifications, thanks!
~ Padoru
There's no such thing as "an unbalanced force".
If all of the forces acting on an object all add up to zero, then we say that
<span>the group </span>of forces is balanced. When that happens, the group of forces
has the same effect on the object as if there were no forces on it at all.
An example:
Two people with exactly equal strength are having a tug-of-war. They pull
with equal force in opposite directions. Each person is sweating and straining,
grunting and groaning, and exerting tremendous force. But their forces add up
to zero, and the rope goes nowhere. The <u>group</u> of forces on the rope is balanced.
On the other hand, if one of the offensive linemen is pulling on one end of
the rope, and one of the cheerleaders is pulling on the other end, then their
forces don't add up to zero, because even though they're opposite, they're
not equal. The <u>group</u> of forces is <u>unbalanced</u>, and the rope moves.
A group of forces is either balanced or unbalanced. A single force isn't.