Technically, the answer is iron. Oxygen has a melting point way below zero (-219 degrees celsius), ice becomes water AT room temperature and bromine is already a liquid at room temperature. So, iron has a melting point greater than room temperature due to the fact that metals are made up of giant structures of atoms in a regular arrangement, and there are strong forces of electrostatic attraction between positive metal ions and negative electrons, meaning that a lot of heat energy is required to break the bonds, i.e. a very high melting point, approx. 1500 degrees celsius. Hope this helps.
Answer:
B) Electrons are located in the cloud-like areas around the nucleus.
Explanation:
The quantum mechanical model of the atom does not consider the path through which an electron travels. It rather estimates the probability of where electrons can be found at each energy level.
The region of maximum probability of where an electron is located is sometimes called an electron cloud or orbital. Each orbital of an atom and the electrons accomodated are described completely by a set of four quantum numbers.
Electronic Configuration of elements in a period is same because If you see the electronic Configuration of elements in a period you will notice that the valence shell electrons for all elements are present in the same Shell. For example, in first period consisting of Hydrogen and Helium, both the elements' valence electrons are present in the same Shell.
Electronic Configuration of Hydrogen,
1s^1
Electronic Configuration of Helium,
1s^2
Both elements' valance electrons are present in the 1st shell
(This is just a small example to understand the concept because other periods are long but the first period is short that's why I gave the example of the first period)
Answer:
91383 J
Explanation:
The equation of the reaction can be represented as:
------>
Given that:
The standard enthalpy of formation of NO(g) is 91.3 kJ⋅mol−1 at 298.15 K.
The equation below shown the reaction between the enthalpy of reaction at a particular temperature to another.
= 
where:
= enthalpy of reaction
= the difference in the heat capacities of the products and the reactants.
∴
=

= ![1(91300 J.mol^{-1} ) +\int\limits^{435}_{298.15} [{(29.86)-\frac{1}{2}(29.38)-\frac{1}{2}29.13}]J.K^{-1}.mol^{-1} \, dT'](https://tex.z-dn.net/?f=1%2891300%20J.mol%5E%7B-1%7D%20%29%20%2B%5Cint%5Climits%5E%7B435%7D_%7B298.15%7D%20%5B%7B%2829.86%29-%5Cfrac%7B1%7D%7B2%7D%2829.38%29-%5Cfrac%7B1%7D%7B2%7D29.13%7D%5DJ.K%5E%7B-1%7D.mol%5E%7B-1%7D%20%5C%2C%20dT%27)
= 91300 J + (0.605 J.K⁻¹)(435-298.15)K
= 91382.79 J
≅ 91383 J
Answer:
98.8
Explanation:
CsF + XeF6 --> CsXeF7
37.8g ................. ?g
37.8g CsF x (1 mol CsF / 151.9g CsF) x (1 mol CsXeF7 / 1 mol CsF) x (397.2g CsXeF7 / 1 mol CsXeF7) = 98.8g CsXeF7 .......... to three significant digits