Mass of PH3= 6.086 g
<h3>Further explanation</h3>
Given
6.0 L of H2
Required
mass of PH3
Solution
Reaction
P4 + 6H2 → 4PH3
Assumed at STP ( 1 mol gas=22.4 L)
Mol of H2 for 6 L :
= 6 : 22.4 L
= 0.268
From the equation, mol PH3 :
= 4/6 x moles H2
= 4/6 x 0.268
= 0.179
Mass PH3 :
= 0.179 x 33,99758 g/mol
= 6.086 g
Answer:
about 79% (79.04369332 to be exact)
Explanation:
Percent composition=(Molar mass of element x amount of it)/Molar mass of compound x 100
Br= 3 x 79.9/303.25 x100=79.04369332
You start by using proportions to find the number of liters of solution:
180 g of glucose / 1 liter of solution = 18 g of glucose / x liter of solution
=> x = 18 g of glucose * 1 liter of solution / 180 g of glucose = 0.1 liter of solution.
If you assume that the 18 grams of glucose does not apport volume to the solution but that the volume of the solution is the same volumen of water added (which is the best assumption you can do given that you do not know the how much the 18 g of glucose affect the volume of the solution) then you should add 0.1 liter of water.
Answer: 0.1 liter of water.
HCI is the limiting reactant, and 4.3 mol AICI3 can be formed.
Answer:
A. Cu^+2(aq)cathode ---> Cu^+2(aq)anode
Explanation:
Electrolysis is the process in which current is passed through a solution thereby causing a chemical change at the anode and cathode. Copper is being purified using electrolysis by using impure copper at the anode and pure copper at the cathode. This pure and impure copper are placed in a copper(ii)sulfate electrolyte solution and dc current is made to pass through it. The resulting changes at the anode and cathode are given by the equation:
cathode: Cu²⁺ + 2e⁻ ⇒ Cu
anode: Cu ⇒ Cu²⁺ + 2e⁻