Answer:
1.19 m/s²
Explanation:
The frequency of the wave generated in the string in the first experiment is f = n/2l√T/μ were T = tension in string = mg were m = 1.30 kg weight = 1300 g , μ = mass per unit length of string = 1.01 g/m. l = length of string to pulley = l₀/2 were l₀ = lent of string. Since f is the second harmonic, n = 2, so
f = 2/2(l₀/2)√mg/μ = 2(√mg/μ)/l₀ (1)
Also, for the second experiment, the period of the wave in the string is T = 2π√l₀/g. From (1) l₀ = 2(√mg/μ)/f and from (2) l₀ = T²g/4π²
Equating (1) and (2) we ave
2(√mg/μ)/f = T²g/4π²
Making g subject of the formula
g = 2π√(2√(m/μ)/f)/T
The period T = 316 s/100 = 3.16 s
Substituting the other values into , we have
g = 2π√(2√(1300 g/1.01 g/m)/200 Hz)/3.16
g = 2π√(2 × 35.877/200 Hz)/3.16
g = 2π√(71.753/200 Hz)/3.16
g = 2π√(0.358)/3.16
g = 2π × 0.599/3.16
g = 1.19 m/s²
P always P because P is an awkward Dorian letter that can always be trusted
Answer:
I hope this will help you
Explanation:
When two neutral objects come into contact--especially in a dry environment--electrons can be knocked loose from one object and picked up by the other. The object that gains electrons becomes negatively charged, while the object that loses electrons becomes positively charged. Objects with like charges repel each other, while those with opposite charges attract each other. This phenomenon--in which objects acquire an electric charge and exert a force on one another--is what we call static electricity.
D. The block moves to the right. There is more force blowing to the right, so the block will move to the right.
Hope this helps
Happy Holidays.
The water molecules only oscillate up and down and not across the wave as water waves are transverse waves. Thus, the oscillations of the particles are perpendicular to the direction of wave propagation.