kinetic energy is converted into elastic potential energy stored in the brakes.
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
Here is the answer of the given problem above.
Use this formula: <span>P = FV = ma*at = ma^2 t
</span><span>Substitute the values, and therefore, we got m(a0)^2t = m(x)^2 (2t)
then, solve for x which is the acceleration at 2t.
</span>The <span>answer would be a0/sqrt(2).
Hope this answers your question. Thanks for posting.
</span>
(D) The gravitational force between the astronaut and the asteroid.
Reason :
All the other forces given in the options, except (D), doesn't account for the motion of the astronaut. They are the forces that act between nucleons or atoms and neither of them accounts for an objects motion.
Answer:
option D
Explanation:
given.
horizontal velocity of arrow and a ball given as 50 m/s and 44 m/s respectively from the top of a building over flat ground.
In vertical direction, they are both identical
In vertical direction the initial velocity of arrow and a ball is 0 m/s
Their acceleration due to gravity is same for both arrow and a ball 9.8 m/s²
they will react bottom at the same time
time of flight is same for both
now,
In horizontal direction,
distance = speed × time
Since speed is more for arrow, it will travel more horizontal distance at the same time.
the correct answer is option D