Answer:
v = 10 m/s
Explanation:
given,
Mass of Mercedes engine = 2000 Kg
Power delivered = 100 kW
angle made with horizontal = 30°
acceleration due to gravity = 10 m/s²
largest speed car can sustain = ?
we know,
Power = Force x velocity
P = F x v
P = mg sinθ x v
P = mg sin 30° x v
P = 0.5 mg x v

v = 10 m/s
hence, the maximum velocity is equal to v = 10 m/s
Answer:
= 5.1 W
Explanation:
time (t) = 30 ms = 0.03 s
mass (m) = 560 g = 0.56 kg
initial velocity (U) = 0 m/s
final velocity (V) = 0.74 m/s
power = \frac{work done}{t} = \frac{f x d}{t} = f x v = m x a x v
m x a x v = m x \frac{V-U}{t} x \frac{V + U}{2}
m x \frac{V-U}{t} x \frac{V + U}{2} = 0.56 x \frac{0.74 - 0}{0.03} x \frac{0.74+0}{2}
= 5.1 W
Answer:
(a) 0.2618 J
(b) 0.1558 J
(c) 0 J
Explanation:
from Hook's Law,
The energy stored in a stretched spring = 1/2ke²
Ep = 1/2ke² ......................... Equation 1
Where k = spring constant, e = extension, E p = potential energy stored in the spring.
(a) When The spring is stretched to 4.11 cm,
Given: k = 310 N/m, e = 4.11 cm = 0.0411 m
Substituting these values into equation 1
Ep = 1/2(310)(0.0411)²
Ep = 155(0.0016892)
Ep =155×0.0016892
Ep = 0.2618 J.
(b) When the spring is stretched 3.17 cm
e = 3.17 cm = 0.0317 m.
Ep = 1/2(310)(0.0317)²
Ep = 155(0.0317)²
Ep = 155(0.0010049)
Ep = 0.155758 J
Ep ≈ 0.1558 J.
(c) When the spring is unstretched,
e = 0 m, k = 310 N/m
Ep = 1/2(310)(0)²
Ep = 0 J.