W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s
On driving your motorcycle in a circle of radius 75 m on wet pavement, the fastest you can go before you lose traction, assuming the coefficient of static friction is 0.20 is 147m/s
Friction helps to maintain the slipping of the vehicle on the road hence lays a very important role.
Maximum velocity of a road with friction is given by the formula,
v = μRg
where, v is the maximum velocity
μ is the coefficient of static friction
R is the radius of the circle road
g is the acceleration due to gravity
Given,
μ = 0.20
R = 75m
g = 9.8m/s²
On substituting the given values in the above formula,
v = 0.20× 75 ×9.8
v = 147m/s
So, the Maximum velocity of the wet road is 147m/s.
Learn more about Velocity here, brainly.com/question/18084516
#SPJ4
We will put the number of trips in the first column, the miles driven in the second column and gallons of fuel used in the third column.
8 7,680 1,010
7 9,940 1,330
12 14,640 1,790
12 13,920 2,050
Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
Answer:
dV/dt = 9 cubic inches per second
Explanation:
Let the height of the cylinder is h
Diameter of cylinder = height of the cylinder = h
Radius of cylinder, r = h/2
dh/dt = 3 inches /s
Volume of cylinder is given by

put r = h/2 so,

Differentiate both sides with respect to t.

Substitute the values, h = 2 inches, dh/dt = 3 inches / s

dV/dt = 9 cubic inches per second
Thus, the volume of cylinder increases by the rate of 9 cubic inches per second.