The branch of science that really lets us understand organisms better.
Explanation:
Hemophilia is a disease that is characterized by an abnormal blood clotting process. There are many different proteins that are involved in the clotting process and a single mutation or change in one of them could result in serious effects. Hemophilia is characterized by an abnormal version of one of the many proteins involved in the clotting process, the proteins that are commonly affected are the coagulation factor 8 or 9 (VIII or IX). These abnormal proteins are caused by a mutation in the gene (within the DNA) that codifies for the production of each protein. In other words, a mutation in the part of the DNA, (gene F8) will lead to a dysfunctional coagulation factor VIII and a mutation in the gene F9 will lead to a dysfunctional coagulation factor IX. Importantly, these mutations could be inherited and could cause hemophilia. Therefore, an error in the DNA and subsequently, an error in the protein will cause hemophilia. Finally, it is important to mention that there are other types of hemophilia that are not caused by the above-mentioned mutations, such as acquired hemophilia.
9514 1404 393
Answer:
- time: 1.122 seconds
- range: 10.693 m
- maximum height: 1.543 m
Explanation:
<u>Given</u>:
runner is launched at 30° angle to horizontal at 11 m/s
acceleration due to gravity is g = -9.8 m/s²
<u>Find</u>:
runner's hang time
runner's distance to the landing point
runner's maximum height
<u>Solution</u>:
The (horizontal, vertical) speed components will be ...
(11 m/s)(cos(30°), sin(30°)) = (5.5√3 m/s, 5.5 m/s)
The time of flight can be found from the height formula:
h(t) = 1/2gt² +vt . . . . . . where v is the vertical speed at launch
The time we're concerned with is the time when h(t)=0 and t>0.
0 = -4.9t^2 +5.5√3t = t(-4.9t +5.5√3)
The second factor is zero when ...
t = (5.5√3)/4.9 ≈ 1.122 . . . seconds hang time
__
The distance to the landing point will be the product of horizontal speed and hang time:
d = (5.5 m/s)(5.5√3/4.9 s) ≈ 10.693 m . . . . distance to landing
__
The maximum height can be found from the formula (based on conversion of kinetic energy to potential energy) ...
h = v²/|2g| = (5.5 m/s)²/(2(9.8 m/s²)) ≈ 1.543 m . . . . maximum height
<span>Active transport involves the mitochondria. </span>