Answer:
(a) B = 2.85 ×
Tesla
(b) I = I = 0.285 A
Explanation:
a. The strength of magnetic field, B, in a solenoid is determined by;
r = 
⇒ B = 
Where: r is the radius, m is the mass of the electron, v is its velocity, q is the charge on the electron and B is the magnetic field
B = 
= 
B = 2.85 ×
Tesla
b. Given that; N/L = 25 turns per centimetre, then the current, I, can be determined by;
B = μ I N/L
⇒ I = B ÷ μN/L
where B is the magnetic field, μ is the permeability of free space = 4.0 ×
Tm/A, N/L is the number of turns per length.
I = B ÷ μN/L
= 
I = 0.285 A
An independent variable is the variable that is changed or controlled in a scientific experiment to test the effects on the dependent variable. A dependent variable is the variable being tested and measured in a scientific experiment.
Answer:
1.40 m/s^2
Explanation:
Given data
Velocity= 17.4 m/s
time= 12.4 seconds
We want to find the acceleration of the rock
We know that
acceleration = velocity/time
Substitute
acceleration= 17.4/12.4
acceleration=1.40 m/s^2
Hence the acceleration is 1.40 m/s^2
Answer:
I = 18 x 10⁻⁹ A = 18 nA
Explanation:
The current is defined as the flow of charge per unit time. Therefore,
I = q/t
where,
I = Average Current passing through nerve cell
q = Total flow of charges through nerve cell
t = time period of flow of charges
Here, in our case:
I = ?
q = (9 pC)(1 x 10⁻¹² C/1 pC) = 9 x 10⁻¹² C
t = (0.5 ms)(1 x 10⁻³ s/1 ms) = 5 x 10⁻⁴ s
Therefore,
I = (9 x 10⁻¹² C)/(5 x 10⁻⁴ s)
<u>I = 18 x 10⁻⁹ A = 18 nA</u>
Answer:
Explanation:
given,
diameter of merry - go - round = 2.40 m
moment of inertia = I = 356 kg∙m²
speed of the merry- go-round = 1.80 rad/s
mass of child = 25 kg
initial angular momentum of the system
final angular momentum of the system
from conservation of angular momentum