Physical characteristics of matter include its mass<span>, weight, volume, and </span>density<span>. It also specifically describes its odor, shape, texture, and </span>hardness<span>. In addition, physical properties describe whether the object is a solid, a liquid, or a gas – its phase of matter at room temperature.</span>
Answer:
Explanation:
Given
1 ) 140 m west in 45 s .
2 ) 90 m east in 25 s .
a )
distance travelled in first 45 s = 140 m
b ) distance travelled in next 25 s = 90 m
c ) Total distance travelled = 140 m + 90 m
= 230 m
d ) average speed in first 45 s
= distance in 45 s 45
= 140 / 45 = 3.11 m /s
e ) average speed in next 25 s
distance in 25 s / 25
= 90 / 25 = 3.6 m /s
f ) average in entire trip
= total distance / total time
= (140 + 90) / ( 25 + 45 )
= 3.28 m /s
g )
displacement in first 45 s = 140 m towards west
h )
displacement in next 25 s = 90 m towards east
i )
total displacement = 140 - 90
= 50 m towards west .
How much gravitational potential energy does the block have
when it gets to the top of the ramp ?
(weight) x (height) = (15 N) x (0.2 m) = 3 Joules .
If there were no friction, you would only need to do 3 Joules of work
to lift the block from the bottom to the top.
But the question says you actually have to do 4 Joules of work
to get the job done.
Friction stole one of your Joules along the way.
Choice-4 is not the correct one.
Choice-1 is the correct one.
===========================
Notice that the mass of the block is NOT 15 kg , and you
don't have to worry about gravity to answer this question.
The formula for potential energy is (m)·(g)·(h) .
But (m·g) is just the WEIGHT, and the formula
is actually (weight)·(height).
The question GIVES us the weight of the block . . . 15 N .
So the potential energy at the top is just (15N)·(0.2m) = 3 Joules.
Given:
ρ = 13.6 x 10³ kg/m³, density of mercury
W = 6.0 N, weight of the mercury sample
g = 9.81 m/s², acceleration due to gravity.
Let V = the volume of the sample.
Then
W = ρVg
or
V = W/(ρg)
= (6.0 N)/[(13.6 x 10³ kg/m³)*(9.81 m/s²)]
= 4.4972 x 10⁻⁵ m³
Answer: The volume is 44.972 x 10⁻⁶ m³
The force of gravity increases with an increase in the mass of objects. . . . A large, massive dog weighs more than a small dog.
Acceleration due to gravity is independent of the mass of objects. . . . Two falling inflated balls of different masses land at the same time.
Air resistance increases with an increase in the surface area of objects. . . . A crumpled ball of paper falls faster than a sheet of paper of the same mass.
arrowRight . . . . a button on a computer keyboard that causes the cursor to move to the right on the screen when pushed
arrowRight . . . . a button on a computer keyboard that causes the cursor to move to the right on the screen when pushed
arrowRight . . . . a button on a computer keyboard that causes the cursor to move to the right on the screen when pushed