Passive prostheses are self-regulating, as shown in the first answer option.
We can arrive at this answer because:
- Passive prostheses are devices used to replace parts of the body that were lost by an incident.
- These prostheses are very useful to establish balance or the aesthetics of the body, but they have no articulations and no movement mechanism, being static.
This limitation allows passive prostheses not to need external regulation and to be self-regulated by fitting the body parts.
You can find more information about articulations and their effects on the link:
brainly.com/question/5847359?referrer=searchResults
Answer:
V₂ = 1.86 L
Explanation:
Given data:
Initial volume = 4.30 L
Initial pressure = 1 atm
Initial temperature = 273.15 K
Final temperature = 302 K
Final volume = ?
Final pressure = 2.56 atm
Solution:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
V₂ = P₁V₁T₂
/T₁ P₂
V₂ = 1 atm ×4.30 L × 302 K / 273.15 K × 2.56 atm
V₂ = 1298.6 atm.L.K / 699.26 K.atm
V₂ = 1.86 L
Answer:
This is because no energy is being created or destroyed in this system
Explanation:
I think this is correct? I hope it helps.
Answer:
If the temperature of gas is decreased the pressure will also goes to decrease.
Explanation:
The pressure and temperature have direct relation. If the temperature of gas will increase the pressure of gas will also goes to increase.
According to the Gay-Lussas's Law,
The pressure of given amount of gas is directly proportional to the absolute temperature when volume is kept constant.
Mathematical relationship:
P ∝ T
P = kT
P/T = k
and
P₁/T₁ = P₂/T₂
Given:
Q = 9.4 kJ/(kg-h), the heat production rate
c = 4.18 J/(g-K), the heat capacity
t = 2.5 h, amount of time
Note that
c = 4.18 J/(g-K) = 4180 J/(kg-K) = 4.18 kJ/kg-K)
Consider 1 kg of mass.
Then
Qt = cΔT
where ΔT is the increase in temperature (°K)
(1 kg)*(9.4 kJ/(kg-h))*(2.5 h) = (1 kg)*(4.18 kJ/(kg-K))*(ΔT K)
23.5 = 4.18 ΔT
ΔT = 23.5/4.18 = 5.622 K = 5.622 °C
Answer: 5.62 K (or 5.62 °C)