Answer:
The expression is shown in the picture below
Explanation:
Answer:
From certain assumptions that the walking speed is 2 m/s, and the stop time is 0.1 s the acceleration would be -20 m/s
Explanation:
Using the average acceleration formula:
where
and
are the changes in the speed and time respectively.
We have by assuming that the walking speed is 2 m/s and the stop time is 0.1s which is equal to the change in time during the stopping.
, where
are the initial speed and final speed respectively, and 
Plugging the previous in the average acceleration formula we get
where the minus sign indicates an acceleration in the opposite direction of the motion (or in other word opposite to the speed's direction).
Answer:
Explanation:
An information contains
25Hz and 75Hz sine wave
Sample frequency is 500Hz
The analogy signal are generally
y(t) = Asin(2πx/λ - wt), w=2πf
y1(t)=Asin(2πx/λ - wt)
y1(t)=Asin(2πx/λ - 2π•25t)
y1(t)=Asin(2πx/λ - 50πt)
Similarly
y2(t)=Asin(2πx/λ - 150πt)
Using Nyquist theorem
Nyquist Theorem states that in order to adequately reproduce a signal it should be periodically sampled at a rate that is 2 times the highest frequency you wish to record.
From sampling
f(nyquist)=f(sample)/2
f(nyquist)=500/2
f(nyquist)=250Hz
From signal
The highest frequency is 150Hz
F(nyquist) = 2×F(highest)
f(nyquist)= 2×150
f(nyquist)= 300Hz
Sample per frequency Ns is given as
Ns=F(sample)/F(highest signal)
Ns=500/150
Ns=3.33sample/period
This is above nyquist rate of 2sample/period
So signal below 300Hz reproduced without aliasing.
The highest resulting frequency is 300Hz
Answer:
NE DIYON INGILIZ MISIN SEN
Answer:
The correct answer to the question is objects have zero acceleration.
Explanation:
Before answering the question, first we have to understand dynamic equilibrium .
A body moving with uniform velocity is said to be in dynamic equilibrium if the net external forces acting on the body is zero. Hence, the body is under balanced forces.
If the external forces acting on a body is not balanced, then the body will accelerate which will destroy its equilibrium condition. Hence, the necessary and sufficient condition for a body to be in dynamic equilibrium is that the forces are balanced.
When a body is in dynamic equilibrium, the body moves with uniform velocity along a straight line unless and until it is compelled by some external unbalanced forces.
Hence, the rate of change of velocity or acceleration of the body will be zero.