Let us say that x is the cut that we will make on the
sides to make a box, therefore the new dimensions are:
l = 15 – 2x
w = 8 – 2x
It is 2x since we cut on two sides.
We know that volume is:
V = l w x
V = (15 – 2x) (8 – 2x) x
V = 120x – 30x^2 – 16x^2 + 4x^3
V = 120x – 46x^2 + 4x^3
Taking the 1st derivative:
dV/dx = 120 – 92x + 12x^2
Set dV/dx = 0 to get maxima:
120 – 92x + 12x^2 = 0
Divide by 12:
x^2 – (92/12)x + 10 = 0
(x – (92/24))^2 = -10 + (92/24)^2
x - 92/24 = ±2.17
x = 1.66, 6
We cannot have x = 6 because that will make our w
negative, so:
x = 1.66 inches
So the largest volume is:
V = 120x – 46x^2 + 4x^3
V = 120(1.66) – 46(1.66)^2 + 4(1.66)^3
V = 90.74 cubic inches
The geosphere interacts with the hydrosphere when water causes rock to erode. The atmosphere provides the geosphere with heat and energy for erosion, and the geosphere reflects the sun's energy back into the atmosphere.
First, foremost, and most critically, you must look at the graph, and critically
examine its behavior from just before until just after the 5-seconds point.
Without that ability ... since the graph is nowhere to be found ... I am hardly
in a position to assist you in the process.
Answer:
Sound energy to electric energy - a person talking into a microphone
Radiant energy to electric energy - sunlight falling on solar panels
Gravitational potential energy to motion energy - a ball dropped from a height
Explanation:
A person talking is the sound energy and going into an electric phone
Sunlight or Radiant energy falls onto the solar panels creating electric energy
The ball is being pulled down by gravity from a certain height, going down to the ground, it’s motion, falling
Answer:
Explanation:
Given that,
Mass of the thin hoop
M = 2kg
Radius of the hoop
R = 0.6m
Moment of inertial of a hoop is
I = MR²
I = 2 × 0.6²
I = 0.72 kgm²
Period of a physical pendulum of small amplitude is given by
T = 2π √(I / Mgd)
Where,
T is the period in seconds
I is the moment of inertia in kgm²
I = 0.72 kgm²
M is the mass of the hoop
M = 2kg
g is the acceleration due to gravity
g = 9.8m/s²
d is the distance from rotational axis to center of of gravity
Therefore, d = r = 0.6m
Then, applying the formula
T = 2π √ (I / MgR)
T = 2π √ (0.72 / (2 × 9.8× 0.6)
T = 2π √ ( 0.72 / 11.76)
T = 2π √0.06122
T = 2π × 0.2474
T = 1.5547 seconds
T ≈ 1.55 seconds to 2d•p
Then, the period of oscillation is 1.55seconds